{"title":"流体里有电磁波继电器","authors":"K. Hausser","doi":"10.1002/BBPC.19610650713","DOIUrl":null,"url":null,"abstract":"Bei Untersuchungen der Elektron‐Spin‐Resonanz ist eine Kenntnis der Relaxationsvorgänge besonders wegen des engen Zusammenhangs zwischen Relaxation und Linienbreite notwendig. Es erscheint zweckmäßig, zwei Gruppen von Verbindungen zu unterscheiden: Solche mit erheblicher Spin‐Bahn‐Kopplung, durch die elektrische Wechselwirkungen auf das Spin‐System übertragen werden können, und solche Verbindungen, bei denen die Spin‐Bahn‐Kopplung vernachlässigbar klein ist. Bei ersteren kann man ein Minimum der Linienbreite und dementsprechend optimale Auflösung der Hyperfeinstruktur durch Aufsuchen des günstigsten Temperaturbereichs erreichen. Bei letzteren wird die Relaxation vor allem durch den gelösten molekularen Sauerstoff bestimmt. Durch Entfernen desselben läßt sich bei freien Radikalen in vielen Fällen eine Relaxationszeit T2 von etwa 10−6 erreichen, was einer Linienbreite von 70 Milligauß entspricht. Information über das Relaxationsverhalten von Lösungen freier Radikale und den Einfluß des Sauerstoffs kann auch aus Untersuchungen des Overhauser‐Effekts gewonnen werden.","PeriodicalId":306381,"journal":{"name":"Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1961-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paramagnetische Relaxation in Flüssigkeiten\",\"authors\":\"K. Hausser\",\"doi\":\"10.1002/BBPC.19610650713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bei Untersuchungen der Elektron‐Spin‐Resonanz ist eine Kenntnis der Relaxationsvorgänge besonders wegen des engen Zusammenhangs zwischen Relaxation und Linienbreite notwendig. Es erscheint zweckmäßig, zwei Gruppen von Verbindungen zu unterscheiden: Solche mit erheblicher Spin‐Bahn‐Kopplung, durch die elektrische Wechselwirkungen auf das Spin‐System übertragen werden können, und solche Verbindungen, bei denen die Spin‐Bahn‐Kopplung vernachlässigbar klein ist. Bei ersteren kann man ein Minimum der Linienbreite und dementsprechend optimale Auflösung der Hyperfeinstruktur durch Aufsuchen des günstigsten Temperaturbereichs erreichen. Bei letzteren wird die Relaxation vor allem durch den gelösten molekularen Sauerstoff bestimmt. Durch Entfernen desselben läßt sich bei freien Radikalen in vielen Fällen eine Relaxationszeit T2 von etwa 10−6 erreichen, was einer Linienbreite von 70 Milligauß entspricht. Information über das Relaxationsverhalten von Lösungen freier Radikale und den Einfluß des Sauerstoffs kann auch aus Untersuchungen des Overhauser‐Effekts gewonnen werden.\",\"PeriodicalId\":306381,\"journal\":{\"name\":\"Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1961-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/BBPC.19610650713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/BBPC.19610650713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bei Untersuchungen der Elektron‐Spin‐Resonanz ist eine Kenntnis der Relaxationsvorgänge besonders wegen des engen Zusammenhangs zwischen Relaxation und Linienbreite notwendig. Es erscheint zweckmäßig, zwei Gruppen von Verbindungen zu unterscheiden: Solche mit erheblicher Spin‐Bahn‐Kopplung, durch die elektrische Wechselwirkungen auf das Spin‐System übertragen werden können, und solche Verbindungen, bei denen die Spin‐Bahn‐Kopplung vernachlässigbar klein ist. Bei ersteren kann man ein Minimum der Linienbreite und dementsprechend optimale Auflösung der Hyperfeinstruktur durch Aufsuchen des günstigsten Temperaturbereichs erreichen. Bei letzteren wird die Relaxation vor allem durch den gelösten molekularen Sauerstoff bestimmt. Durch Entfernen desselben läßt sich bei freien Radikalen in vielen Fällen eine Relaxationszeit T2 von etwa 10−6 erreichen, was einer Linienbreite von 70 Milligauß entspricht. Information über das Relaxationsverhalten von Lösungen freier Radikale und den Einfluß des Sauerstoffs kann auch aus Untersuchungen des Overhauser‐Effekts gewonnen werden.