Alòs Barndorff-Nielsen和Shephard模型的类型分解公式

Takuji Arai
{"title":"Alòs Barndorff-Nielsen和Shephard模型的类型分解公式","authors":"Takuji Arai","doi":"10.31390/josa.2.2.03","DOIUrl":null,"url":null,"abstract":"The objective is to provide an Al\\`os type decomposition formula of call option prices for the Barndorff-Nielsen and Shephard model: an Ornstein-Uhlenbeck type stochastic volatility model driven by a subordinator without drift. Al\\`os (2012) introduced a decomposition expression for the Heston model by using Ito's formula. In this paper, we extend it to the Barndorff-Nielsen and Shephard model. As far as we know, this is the first result on the Al\\`os type decomposition formula for models with infinite active jumps.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Alòs Type Decomposition Formula for Barndorff-Nielsen and Shephard Model\",\"authors\":\"Takuji Arai\",\"doi\":\"10.31390/josa.2.2.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective is to provide an Al\\\\`os type decomposition formula of call option prices for the Barndorff-Nielsen and Shephard model: an Ornstein-Uhlenbeck type stochastic volatility model driven by a subordinator without drift. Al\\\\`os (2012) introduced a decomposition expression for the Heston model by using Ito's formula. In this paper, we extend it to the Barndorff-Nielsen and Shephard model. As far as we know, this is the first result on the Al\\\\`os type decomposition formula for models with infinite active jumps.\",\"PeriodicalId\":263604,\"journal\":{\"name\":\"Journal of Stochastic Analysis\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/josa.2.2.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.2.2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目的是为Barndorff-Nielsen和Shephard模型提供一个Al\ ' s型看涨期权价格分解公式:一个由下属驱动的无漂移的Ornstein-Uhlenbeck型随机波动率模型。Al\ ' os(2012)利用Ito的公式引入了Heston模型的分解表达式。在本文中,我们将其推广到Barndorff-Nielsen和Shephard模型。据我们所知,这是关于具有无限主动跳跃的模型的Al\ ' os型分解公式的第一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alòs Type Decomposition Formula for Barndorff-Nielsen and Shephard Model
The objective is to provide an Al\`os type decomposition formula of call option prices for the Barndorff-Nielsen and Shephard model: an Ornstein-Uhlenbeck type stochastic volatility model driven by a subordinator without drift. Al\`os (2012) introduced a decomposition expression for the Heston model by using Ito's formula. In this paper, we extend it to the Barndorff-Nielsen and Shephard model. As far as we know, this is the first result on the Al\`os type decomposition formula for models with infinite active jumps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信