实时上半身检测和方向估计通过深度线索辅助技术

Guang Yang, Mamoru Iwabuchi, Kenryu Nakamura
{"title":"实时上半身检测和方向估计通过深度线索辅助技术","authors":"Guang Yang, Mamoru Iwabuchi, Kenryu Nakamura","doi":"10.1109/CIRAT.2013.6613817","DOIUrl":null,"url":null,"abstract":"Automatic and efficient human pose estimation has great practical value in video surveillance. In this paper, we explore how a consumer depth sensor can assist with upper-body detection and pose estimation more precisely in the field of assistive technology for people with disabilities, and a novel real-time upper-body pose (orientation) estimation method is presented. At first, the Haar cascade based upper-body detection is conducted, and the depth information in a fixed subregion is extracted as the input feature vector. Then, support vector machine (SVM) and naive Bayes classifier are compared for estimating the upper-body orientation. Further, in order to acquire the continuous estimation data during a long time for behavioral analysis, we also adopt the support vector regression (SVR) to train a regression model. The experimental results show the effectiveness of the proposed method.","PeriodicalId":348872,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Rehabilitation and Assistive Technologies (CIRAT)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-time upper-body detection and orientation estimation via depth cues for assistive technology\",\"authors\":\"Guang Yang, Mamoru Iwabuchi, Kenryu Nakamura\",\"doi\":\"10.1109/CIRAT.2013.6613817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic and efficient human pose estimation has great practical value in video surveillance. In this paper, we explore how a consumer depth sensor can assist with upper-body detection and pose estimation more precisely in the field of assistive technology for people with disabilities, and a novel real-time upper-body pose (orientation) estimation method is presented. At first, the Haar cascade based upper-body detection is conducted, and the depth information in a fixed subregion is extracted as the input feature vector. Then, support vector machine (SVM) and naive Bayes classifier are compared for estimating the upper-body orientation. Further, in order to acquire the continuous estimation data during a long time for behavioral analysis, we also adopt the support vector regression (SVR) to train a regression model. The experimental results show the effectiveness of the proposed method.\",\"PeriodicalId\":348872,\"journal\":{\"name\":\"2013 IEEE Symposium on Computational Intelligence in Rehabilitation and Assistive Technologies (CIRAT)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Computational Intelligence in Rehabilitation and Assistive Technologies (CIRAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRAT.2013.6613817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Rehabilitation and Assistive Technologies (CIRAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRAT.2013.6613817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动、高效的人体姿态估计在视频监控中具有重要的实用价值。在本文中,我们探讨了消费者深度传感器如何在残疾人辅助技术领域更精确地辅助上半身检测和姿态估计,并提出了一种新的实时上半身姿态(方向)估计方法。首先进行基于Haar级联的上体检测,提取固定子区域的深度信息作为输入特征向量;然后,比较支持向量机和朴素贝叶斯分类器对上半身方向的估计。此外,为了获得长时间连续的估计数据用于行为分析,我们还采用支持向量回归(SVR)训练回归模型。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time upper-body detection and orientation estimation via depth cues for assistive technology
Automatic and efficient human pose estimation has great practical value in video surveillance. In this paper, we explore how a consumer depth sensor can assist with upper-body detection and pose estimation more precisely in the field of assistive technology for people with disabilities, and a novel real-time upper-body pose (orientation) estimation method is presented. At first, the Haar cascade based upper-body detection is conducted, and the depth information in a fixed subregion is extracted as the input feature vector. Then, support vector machine (SVM) and naive Bayes classifier are compared for estimating the upper-body orientation. Further, in order to acquire the continuous estimation data during a long time for behavioral analysis, we also adopt the support vector regression (SVR) to train a regression model. The experimental results show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信