非均匀相对度系统输出反馈单位矢量控制的全局多变量HOSM微分器

T. R. Oliveira, Victor Hugo Pereira Rodrigues, Andrei Battistel, L. Fridman
{"title":"非均匀相对度系统输出反馈单位矢量控制的全局多变量HOSM微分器","authors":"T. R. Oliveira, Victor Hugo Pereira Rodrigues, Andrei Battistel, L. Fridman","doi":"10.1109/VSS.2018.8460378","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an output feedback unit vector controller to solve the longstanding problem of global exact output tracking for a class of multivariable uncertain plants with nonlinear disturbances. In order to deal with the nonuniform arbitrary relative degree, we extend our previous estimation scheme based on global differentiators using dynamic gains to a multivariable framework. A diagonally stable assumption over the system high-frequency gain (HFG) matrix must be invoked. Preserving the same guidelines and simplicity of its monovariable version, the variable gain super-twisting algorithm (STA) is employed to obtain the robust and exact multivariable differentiator. In addition, norm observers for the unmeasured state are employed to dominate the disturbances as well as to update the differentiator gains since both may be state dependent. Thus, uniform global exponential stability and ultimate exact tracking are guaranteed. A numerical example is presented to illustrate the application of the proposed multivariable approach.","PeriodicalId":127777,"journal":{"name":"2018 15th International Workshop on Variable Structure Systems (VSS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Global Multivariable HOSM Differentiator for Output-Feedback Unit Vector Control of Nonuniform Relative Degree Systems\",\"authors\":\"T. R. Oliveira, Victor Hugo Pereira Rodrigues, Andrei Battistel, L. Fridman\",\"doi\":\"10.1109/VSS.2018.8460378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an output feedback unit vector controller to solve the longstanding problem of global exact output tracking for a class of multivariable uncertain plants with nonlinear disturbances. In order to deal with the nonuniform arbitrary relative degree, we extend our previous estimation scheme based on global differentiators using dynamic gains to a multivariable framework. A diagonally stable assumption over the system high-frequency gain (HFG) matrix must be invoked. Preserving the same guidelines and simplicity of its monovariable version, the variable gain super-twisting algorithm (STA) is employed to obtain the robust and exact multivariable differentiator. In addition, norm observers for the unmeasured state are employed to dominate the disturbances as well as to update the differentiator gains since both may be state dependent. Thus, uniform global exponential stability and ultimate exact tracking are guaranteed. A numerical example is presented to illustrate the application of the proposed multivariable approach.\",\"PeriodicalId\":127777,\"journal\":{\"name\":\"2018 15th International Workshop on Variable Structure Systems (VSS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Workshop on Variable Structure Systems (VSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSS.2018.8460378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Workshop on Variable Structure Systems (VSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2018.8460378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对一类具有非线性扰动的多变量不确定对象的全局精确输出跟踪问题,提出了一种输出反馈单位矢量控制器。为了处理非均匀任意相对度,我们将先前基于全局微分器的动态增益估计方案扩展到多变量框架。必须调用系统高频增益(HFG)矩阵的对角稳定假设。采用变增益超扭转算法(STA),在保持单变量版本相同的指导原则和简单性的前提下,获得鲁棒精确的多变量微分器。此外,未测量状态的范数观测器被用来控制干扰以及更新微分器增益,因为两者都可能是状态相关的。从而保证了全局指数稳定和最终精确跟踪。最后给出了一个数值例子来说明所提出的多变量方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Multivariable HOSM Differentiator for Output-Feedback Unit Vector Control of Nonuniform Relative Degree Systems
In this paper, we propose an output feedback unit vector controller to solve the longstanding problem of global exact output tracking for a class of multivariable uncertain plants with nonlinear disturbances. In order to deal with the nonuniform arbitrary relative degree, we extend our previous estimation scheme based on global differentiators using dynamic gains to a multivariable framework. A diagonally stable assumption over the system high-frequency gain (HFG) matrix must be invoked. Preserving the same guidelines and simplicity of its monovariable version, the variable gain super-twisting algorithm (STA) is employed to obtain the robust and exact multivariable differentiator. In addition, norm observers for the unmeasured state are employed to dominate the disturbances as well as to update the differentiator gains since both may be state dependent. Thus, uniform global exponential stability and ultimate exact tracking are guaranteed. A numerical example is presented to illustrate the application of the proposed multivariable approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信