城市环境中第一人称行人视觉导航的端到端深度强化学习

Honghu Xue, Rui Song, Julian Petzold, Benedikt Hein, Heiko Hamann, Elmar Rueckert
{"title":"城市环境中第一人称行人视觉导航的端到端深度强化学习","authors":"Honghu Xue, Rui Song, Julian Petzold, Benedikt Hein, Heiko Hamann, Elmar Rueckert","doi":"10.1109/Humanoids53995.2022.10000201","DOIUrl":null,"url":null,"abstract":"We solve a pedestrian visual navigation problem with a first-person view in an urban setting via deep reinforcement learning in an end-to-end manner. The major challenges lie in severe partial observability and sparse positive experiences of reaching the goal. To address partial observability, we propose a novel 3D-temporal convolutional network to encode sequential historical visual observations, its effectiveness is verified by comparing to a commonly-used Frame-Stacking approach. For sparse positive samples, we propose an improved automatic curriculum learning algorithm NavACL+, which proposes meaningful curricula starting from easy tasks and gradually generalizing to challenging ones. NavACL+ is shown to facilitate the learning process with 21% earlier convergence, to improve the task success rate on difficult tasks by 40% compared to the original NavACL algorithm [1] and to offer enhanced generalization to different initial poses compared to training from a fixed initial pose.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments\",\"authors\":\"Honghu Xue, Rui Song, Julian Petzold, Benedikt Hein, Heiko Hamann, Elmar Rueckert\",\"doi\":\"10.1109/Humanoids53995.2022.10000201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve a pedestrian visual navigation problem with a first-person view in an urban setting via deep reinforcement learning in an end-to-end manner. The major challenges lie in severe partial observability and sparse positive experiences of reaching the goal. To address partial observability, we propose a novel 3D-temporal convolutional network to encode sequential historical visual observations, its effectiveness is verified by comparing to a commonly-used Frame-Stacking approach. For sparse positive samples, we propose an improved automatic curriculum learning algorithm NavACL+, which proposes meaningful curricula starting from easy tasks and gradually generalizing to challenging ones. NavACL+ is shown to facilitate the learning process with 21% earlier convergence, to improve the task success rate on difficult tasks by 40% compared to the original NavACL algorithm [1] and to offer enhanced generalization to different initial poses compared to training from a fixed initial pose.\",\"PeriodicalId\":180816,\"journal\":{\"name\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids53995.2022.10000201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们通过端到端方式的深度强化学习,解决了城市环境中第一人称视角的行人视觉导航问题。主要的挑战在于严重的部分可观测性和稀少的实现目标的积极经验。为了解决部分可观测性问题,我们提出了一种新的3D-temporal卷积网络来编码序列历史视觉观测,并通过与常用的帧堆叠方法进行比较来验证其有效性。对于稀疏正样本,我们提出了一种改进的自动课程学习算法NavACL+,该算法从简单的任务开始,逐步推广到具有挑战性的任务,提出有意义的课程。研究表明,与原始NavACL算法[1]相比,NavACL+以21%的早期收敛率促进了学习过程,将困难任务的任务成功率提高了40%,并且与从固定初始姿态进行训练相比,对不同初始姿态的泛化能力增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments
We solve a pedestrian visual navigation problem with a first-person view in an urban setting via deep reinforcement learning in an end-to-end manner. The major challenges lie in severe partial observability and sparse positive experiences of reaching the goal. To address partial observability, we propose a novel 3D-temporal convolutional network to encode sequential historical visual observations, its effectiveness is verified by comparing to a commonly-used Frame-Stacking approach. For sparse positive samples, we propose an improved automatic curriculum learning algorithm NavACL+, which proposes meaningful curricula starting from easy tasks and gradually generalizing to challenging ones. NavACL+ is shown to facilitate the learning process with 21% earlier convergence, to improve the task success rate on difficult tasks by 40% compared to the original NavACL algorithm [1] and to offer enhanced generalization to different initial poses compared to training from a fixed initial pose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信