气团偏差故障预测的深度学习模型

Karthik Chinnapolamada
{"title":"气团偏差故障预测的深度学习模型","authors":"Karthik Chinnapolamada","doi":"10.37285/ajmt.1.2.4","DOIUrl":null,"url":null,"abstract":"Major Systems of an internal combustion Engine are Air System, Fuel system, and Exhaust system. Any malfunction in these systems increases emissions. OBD legislation mandates to monitor these systems for any faults and appropriate action should be taken in case of the any faults which increase vehicle emissions. The idea of the paper is to find the Air mass flow deviation faults using datamining and machine learning based approach. Detection of fault is classifying whether system is faulty or not. Objective is to create a deep learning model using the available vehicle data to classify the system for a fault. Three main inputs for the Air Mass flow in an internal combustion Engine are1) Fresh Air which measure using Mass Air Flow sensor2) Low Pressure EGR3) High Pressure EGRDuring vehicle lifetime, due to different real vehicle operating conditions and environmental conditions, deviation in the set point of air mass flow and actual mass flow are possible to an extent, which can affect vehicle emissions. Deviation in the Air Mass flow can be caused by intake Air mass, LP-EGR, HP-EGR. The Aim of the project is to create the deep learning model for Air Mass Flow Hi and Low faults using the available data, and associate the fault to the component in the Intake Air System.","PeriodicalId":294802,"journal":{"name":"ARAI Journal of Mobility Technology","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Model for Prediction of Air Mass Deviation Faults\",\"authors\":\"Karthik Chinnapolamada\",\"doi\":\"10.37285/ajmt.1.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Major Systems of an internal combustion Engine are Air System, Fuel system, and Exhaust system. Any malfunction in these systems increases emissions. OBD legislation mandates to monitor these systems for any faults and appropriate action should be taken in case of the any faults which increase vehicle emissions. The idea of the paper is to find the Air mass flow deviation faults using datamining and machine learning based approach. Detection of fault is classifying whether system is faulty or not. Objective is to create a deep learning model using the available vehicle data to classify the system for a fault. Three main inputs for the Air Mass flow in an internal combustion Engine are1) Fresh Air which measure using Mass Air Flow sensor2) Low Pressure EGR3) High Pressure EGRDuring vehicle lifetime, due to different real vehicle operating conditions and environmental conditions, deviation in the set point of air mass flow and actual mass flow are possible to an extent, which can affect vehicle emissions. Deviation in the Air Mass flow can be caused by intake Air mass, LP-EGR, HP-EGR. The Aim of the project is to create the deep learning model for Air Mass Flow Hi and Low faults using the available data, and associate the fault to the component in the Intake Air System.\",\"PeriodicalId\":294802,\"journal\":{\"name\":\"ARAI Journal of Mobility Technology\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARAI Journal of Mobility Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37285/ajmt.1.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARAI Journal of Mobility Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ajmt.1.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内燃机的主要系统有空气系统、燃油系统和排气系统。这些系统的任何故障都会增加排放。OBD法例规定监测这些系统的任何故障,并应采取适当的行动,以防任何故障增加车辆排放。本文的思想是利用数据挖掘和基于机器学习的方法来发现空气质量流量偏差故障。故障检测是对系统是否发生故障进行分类。目标是使用可用的车辆数据创建一个深度学习模型来对系统进行故障分类。内燃机空气质量流量的三个主要输入是:1)新鲜空气(使用质量空气流量传感器测量)2)低压EGR3)高压EGR3)在车辆使用寿命期间,由于车辆实际工况和环境条件的不同,空气质量流量的设定值可能与实际质量流量有一定的偏差,从而影响车辆的排放。进气质量、LP-EGR、HP-EGR均可引起空气质量流的偏差。该项目的目的是使用可用数据创建空气质量流量高低故障的深度学习模型,并将故障与进气系统中的组件关联起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Model for Prediction of Air Mass Deviation Faults
Major Systems of an internal combustion Engine are Air System, Fuel system, and Exhaust system. Any malfunction in these systems increases emissions. OBD legislation mandates to monitor these systems for any faults and appropriate action should be taken in case of the any faults which increase vehicle emissions. The idea of the paper is to find the Air mass flow deviation faults using datamining and machine learning based approach. Detection of fault is classifying whether system is faulty or not. Objective is to create a deep learning model using the available vehicle data to classify the system for a fault. Three main inputs for the Air Mass flow in an internal combustion Engine are1) Fresh Air which measure using Mass Air Flow sensor2) Low Pressure EGR3) High Pressure EGRDuring vehicle lifetime, due to different real vehicle operating conditions and environmental conditions, deviation in the set point of air mass flow and actual mass flow are possible to an extent, which can affect vehicle emissions. Deviation in the Air Mass flow can be caused by intake Air mass, LP-EGR, HP-EGR. The Aim of the project is to create the deep learning model for Air Mass Flow Hi and Low faults using the available data, and associate the fault to the component in the Intake Air System.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信