Jia-Jhe Song, Wei-Jen Chen, Yung-Fang Chen, S. Tseng
{"title":"基于深度神经网络的多用户OFDM系统子载波分配","authors":"Jia-Jhe Song, Wei-Jen Chen, Yung-Fang Chen, S. Tseng","doi":"10.1109/ICASI57738.2023.10179541","DOIUrl":null,"url":null,"abstract":"Previously, we proposed schemes in [1] and [2] for the classical subcarrier, bit, and power allocation problem [3] to minimize the total transmit power for multiuser orthogonal frequency division multiplexing systems in downlink transmission. In this paper, we propose a deep neural network (DNN) structure to speed up solving this complex problem. We propose a deep learning frame structure in which each group of allocation is termed as a batch; after some numbers of iterations and epochs, the loss will tend to converge to a constant value. The simulation results reveal that the proposed DNN-based schemes offer competitive performance and reduce computing time tremendously compared with those of the existing approaches.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subcarrier Allocation for Multiuser OFDM Systems by Using Deep Neural Networks\",\"authors\":\"Jia-Jhe Song, Wei-Jen Chen, Yung-Fang Chen, S. Tseng\",\"doi\":\"10.1109/ICASI57738.2023.10179541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previously, we proposed schemes in [1] and [2] for the classical subcarrier, bit, and power allocation problem [3] to minimize the total transmit power for multiuser orthogonal frequency division multiplexing systems in downlink transmission. In this paper, we propose a deep neural network (DNN) structure to speed up solving this complex problem. We propose a deep learning frame structure in which each group of allocation is termed as a batch; after some numbers of iterations and epochs, the loss will tend to converge to a constant value. The simulation results reveal that the proposed DNN-based schemes offer competitive performance and reduce computing time tremendously compared with those of the existing approaches.\",\"PeriodicalId\":281254,\"journal\":{\"name\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI57738.2023.10179541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subcarrier Allocation for Multiuser OFDM Systems by Using Deep Neural Networks
Previously, we proposed schemes in [1] and [2] for the classical subcarrier, bit, and power allocation problem [3] to minimize the total transmit power for multiuser orthogonal frequency division multiplexing systems in downlink transmission. In this paper, we propose a deep neural network (DNN) structure to speed up solving this complex problem. We propose a deep learning frame structure in which each group of allocation is termed as a batch; after some numbers of iterations and epochs, the loss will tend to converge to a constant value. The simulation results reveal that the proposed DNN-based schemes offer competitive performance and reduce computing time tremendously compared with those of the existing approaches.