基于深度神经网络的多用户OFDM系统子载波分配

Jia-Jhe Song, Wei-Jen Chen, Yung-Fang Chen, S. Tseng
{"title":"基于深度神经网络的多用户OFDM系统子载波分配","authors":"Jia-Jhe Song, Wei-Jen Chen, Yung-Fang Chen, S. Tseng","doi":"10.1109/ICASI57738.2023.10179541","DOIUrl":null,"url":null,"abstract":"Previously, we proposed schemes in [1] and [2] for the classical subcarrier, bit, and power allocation problem [3] to minimize the total transmit power for multiuser orthogonal frequency division multiplexing systems in downlink transmission. In this paper, we propose a deep neural network (DNN) structure to speed up solving this complex problem. We propose a deep learning frame structure in which each group of allocation is termed as a batch; after some numbers of iterations and epochs, the loss will tend to converge to a constant value. The simulation results reveal that the proposed DNN-based schemes offer competitive performance and reduce computing time tremendously compared with those of the existing approaches.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subcarrier Allocation for Multiuser OFDM Systems by Using Deep Neural Networks\",\"authors\":\"Jia-Jhe Song, Wei-Jen Chen, Yung-Fang Chen, S. Tseng\",\"doi\":\"10.1109/ICASI57738.2023.10179541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previously, we proposed schemes in [1] and [2] for the classical subcarrier, bit, and power allocation problem [3] to minimize the total transmit power for multiuser orthogonal frequency division multiplexing systems in downlink transmission. In this paper, we propose a deep neural network (DNN) structure to speed up solving this complex problem. We propose a deep learning frame structure in which each group of allocation is termed as a batch; after some numbers of iterations and epochs, the loss will tend to converge to a constant value. The simulation results reveal that the proposed DNN-based schemes offer competitive performance and reduce computing time tremendously compared with those of the existing approaches.\",\"PeriodicalId\":281254,\"journal\":{\"name\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI57738.2023.10179541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先前,我们在[1]和[2]中针对经典的子载波、位和功率分配问题[3]提出了最小化多用户正交频分复用系统下行传输总发射功率的方案。在本文中,我们提出了一种深度神经网络(DNN)结构来加速解决这一复杂问题。我们提出了一种深度学习框架结构,其中每组分配被称为一个批;经过一定次数的迭代和epoch后,损失将趋于收敛于一个常数值。仿真结果表明,与现有方法相比,本文提出的基于dnn的方案具有较好的性能,并且大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subcarrier Allocation for Multiuser OFDM Systems by Using Deep Neural Networks
Previously, we proposed schemes in [1] and [2] for the classical subcarrier, bit, and power allocation problem [3] to minimize the total transmit power for multiuser orthogonal frequency division multiplexing systems in downlink transmission. In this paper, we propose a deep neural network (DNN) structure to speed up solving this complex problem. We propose a deep learning frame structure in which each group of allocation is termed as a batch; after some numbers of iterations and epochs, the loss will tend to converge to a constant value. The simulation results reveal that the proposed DNN-based schemes offer competitive performance and reduce computing time tremendously compared with those of the existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信