使用变曲率运动学的连续体机器人软管3D打印混凝土

Manu Srivastava, Jake Ammons, A. B. Peerzada, V. Krovi, P. Rangaraju, I. Walker
{"title":"使用变曲率运动学的连续体机器人软管3D打印混凝土","authors":"Manu Srivastava, Jake Ammons, A. B. Peerzada, V. Krovi, P. Rangaraju, I. Walker","doi":"10.1109/icra46639.2022.9812123","DOIUrl":null,"url":null,"abstract":"We present a novel application of continuum robots acting as concrete hoses to support 3D printing of cementitious materials. An industrial concrete hose was fitted with a cable harness and remotely actuated via tendons. The resulting continuum hose robot exhibited non constant curvature. In order to account for this, a new geometric approach to modeling variable curvature inverse kinematics using Euler curves is introduced herein. The new closed form model does not impose any additional computational cost compared to the constant curvature model and results in a marked improvement in the observed performance. Experiments involving 3D printing with cementitious mortar using a continuum hose robot were also conducted.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3D Printing of Concrete with a Continuum Robot Hose Using Variable Curvature Kinematics\",\"authors\":\"Manu Srivastava, Jake Ammons, A. B. Peerzada, V. Krovi, P. Rangaraju, I. Walker\",\"doi\":\"10.1109/icra46639.2022.9812123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel application of continuum robots acting as concrete hoses to support 3D printing of cementitious materials. An industrial concrete hose was fitted with a cable harness and remotely actuated via tendons. The resulting continuum hose robot exhibited non constant curvature. In order to account for this, a new geometric approach to modeling variable curvature inverse kinematics using Euler curves is introduced herein. The new closed form model does not impose any additional computational cost compared to the constant curvature model and results in a marked improvement in the observed performance. Experiments involving 3D printing with cementitious mortar using a continuum hose robot were also conducted.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9812123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9812123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了连续体机器人作为混凝土软管的新应用,以支持胶凝材料的3D打印。工业混凝土软管配有电缆线束,并通过肌腱远程驱动。由此产生的连续软管机器人呈现出非恒定曲率。为了解决这一问题,本文介绍了一种新的用欧拉曲线建模变曲率逆运动学的几何方法。与常曲率模型相比,新的封闭形式模型不会增加任何额外的计算成本,并且可以显著改善观察到的性能。利用连续软管机器人进行了胶凝砂浆3D打印实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Printing of Concrete with a Continuum Robot Hose Using Variable Curvature Kinematics
We present a novel application of continuum robots acting as concrete hoses to support 3D printing of cementitious materials. An industrial concrete hose was fitted with a cable harness and remotely actuated via tendons. The resulting continuum hose robot exhibited non constant curvature. In order to account for this, a new geometric approach to modeling variable curvature inverse kinematics using Euler curves is introduced herein. The new closed form model does not impose any additional computational cost compared to the constant curvature model and results in a marked improvement in the observed performance. Experiments involving 3D printing with cementitious mortar using a continuum hose robot were also conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信