Manu Srivastava, Jake Ammons, A. B. Peerzada, V. Krovi, P. Rangaraju, I. Walker
{"title":"使用变曲率运动学的连续体机器人软管3D打印混凝土","authors":"Manu Srivastava, Jake Ammons, A. B. Peerzada, V. Krovi, P. Rangaraju, I. Walker","doi":"10.1109/icra46639.2022.9812123","DOIUrl":null,"url":null,"abstract":"We present a novel application of continuum robots acting as concrete hoses to support 3D printing of cementitious materials. An industrial concrete hose was fitted with a cable harness and remotely actuated via tendons. The resulting continuum hose robot exhibited non constant curvature. In order to account for this, a new geometric approach to modeling variable curvature inverse kinematics using Euler curves is introduced herein. The new closed form model does not impose any additional computational cost compared to the constant curvature model and results in a marked improvement in the observed performance. Experiments involving 3D printing with cementitious mortar using a continuum hose robot were also conducted.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3D Printing of Concrete with a Continuum Robot Hose Using Variable Curvature Kinematics\",\"authors\":\"Manu Srivastava, Jake Ammons, A. B. Peerzada, V. Krovi, P. Rangaraju, I. Walker\",\"doi\":\"10.1109/icra46639.2022.9812123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel application of continuum robots acting as concrete hoses to support 3D printing of cementitious materials. An industrial concrete hose was fitted with a cable harness and remotely actuated via tendons. The resulting continuum hose robot exhibited non constant curvature. In order to account for this, a new geometric approach to modeling variable curvature inverse kinematics using Euler curves is introduced herein. The new closed form model does not impose any additional computational cost compared to the constant curvature model and results in a marked improvement in the observed performance. Experiments involving 3D printing with cementitious mortar using a continuum hose robot were also conducted.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9812123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9812123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D Printing of Concrete with a Continuum Robot Hose Using Variable Curvature Kinematics
We present a novel application of continuum robots acting as concrete hoses to support 3D printing of cementitious materials. An industrial concrete hose was fitted with a cable harness and remotely actuated via tendons. The resulting continuum hose robot exhibited non constant curvature. In order to account for this, a new geometric approach to modeling variable curvature inverse kinematics using Euler curves is introduced herein. The new closed form model does not impose any additional computational cost compared to the constant curvature model and results in a marked improvement in the observed performance. Experiments involving 3D printing with cementitious mortar using a continuum hose robot were also conducted.