基于yolov5模型的改进梨识别与定位算法

Xiaomei Hu, Yi Chen, Jun Wu
{"title":"基于yolov5模型的改进梨识别与定位算法","authors":"Xiaomei Hu, Yi Chen, Jun Wu","doi":"10.1117/12.2639309","DOIUrl":null,"url":null,"abstract":"Improving the visual recognition and positioning accuracy in the outdoor environment is an important way to improve the picking efficiency of fruit picking robots. With the rapid development of artificial intelligence, the convolutional neural network algorithm has gradually become an important research direction for machine recognition and localization. It can automatically extract target features, with high recognition accuracy, high speed and strong robustness. This paper takes pears as the research object, and proposes an improved pear recognition and localization algorithm based on the yolov5 model. The generalization ability of the model is improved by preprocessing and data enhancement of the data set, and an improved k-means clustering algorithm is proposed to realize the optimal calculation of the initial anchor frame. Compared with the original yolov5 model, the fitness and best recall rate of the improved algorithm in recognizing pears are increased by 6% and 9%, respectively.","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved pear recognition and localization algorithm based on yolov5 model\",\"authors\":\"Xiaomei Hu, Yi Chen, Jun Wu\",\"doi\":\"10.1117/12.2639309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the visual recognition and positioning accuracy in the outdoor environment is an important way to improve the picking efficiency of fruit picking robots. With the rapid development of artificial intelligence, the convolutional neural network algorithm has gradually become an important research direction for machine recognition and localization. It can automatically extract target features, with high recognition accuracy, high speed and strong robustness. This paper takes pears as the research object, and proposes an improved pear recognition and localization algorithm based on the yolov5 model. The generalization ability of the model is improved by preprocessing and data enhancement of the data set, and an improved k-means clustering algorithm is proposed to realize the optimal calculation of the initial anchor frame. Compared with the original yolov5 model, the fitness and best recall rate of the improved algorithm in recognizing pears are increased by 6% and 9%, respectively.\",\"PeriodicalId\":336892,\"journal\":{\"name\":\"Neural Networks, Information and Communication Engineering\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks, Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2639309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2639309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提高户外环境下的视觉识别和定位精度是提高水果采摘机器人采摘效率的重要途径。随着人工智能的快速发展,卷积神经网络算法逐渐成为机器识别和定位的重要研究方向。该方法能够自动提取目标特征,具有识别精度高、速度快、鲁棒性强的特点。本文以梨为研究对象,提出了一种改进的基于yolov5模型的梨识别与定位算法。通过对数据集的预处理和数据增强,提高模型的泛化能力,并提出改进的k-means聚类算法,实现初始锚框架的优化计算。与原来的yolov5模型相比,改进算法识别梨的适应度和最佳召回率分别提高了6%和9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved pear recognition and localization algorithm based on yolov5 model
Improving the visual recognition and positioning accuracy in the outdoor environment is an important way to improve the picking efficiency of fruit picking robots. With the rapid development of artificial intelligence, the convolutional neural network algorithm has gradually become an important research direction for machine recognition and localization. It can automatically extract target features, with high recognition accuracy, high speed and strong robustness. This paper takes pears as the research object, and proposes an improved pear recognition and localization algorithm based on the yolov5 model. The generalization ability of the model is improved by preprocessing and data enhancement of the data set, and an improved k-means clustering algorithm is proposed to realize the optimal calculation of the initial anchor frame. Compared with the original yolov5 model, the fitness and best recall rate of the improved algorithm in recognizing pears are increased by 6% and 9%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信