作为集群集成框架的优势集:一种进化博弈论方法

Alireza Chakeri, L. Hall
{"title":"作为集群集成框架的优势集:一种进化博弈论方法","authors":"Alireza Chakeri, L. Hall","doi":"10.1109/ICPR.2014.595","DOIUrl":null,"url":null,"abstract":"Ensemble clustering aggregates partitions obtained from several individual clustering algorithms. This can improve the accuracy of results from individual methods and provide robustness against variability in the methods applied. Theorems show one can find dominant sets (clusters) very efficiently by using an evolutionary game theoretic approach. Experiments on an MRI data set consisting of about 4 million data are detailed. The distributed dominant set framework generates partitions of quality slightly better than clustering all the data using fuzzy C means.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dominant Sets as a Framework for Cluster Ensembles: An Evolutionary Game Theory Approach\",\"authors\":\"Alireza Chakeri, L. Hall\",\"doi\":\"10.1109/ICPR.2014.595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensemble clustering aggregates partitions obtained from several individual clustering algorithms. This can improve the accuracy of results from individual methods and provide robustness against variability in the methods applied. Theorems show one can find dominant sets (clusters) very efficiently by using an evolutionary game theoretic approach. Experiments on an MRI data set consisting of about 4 million data are detailed. The distributed dominant set framework generates partitions of quality slightly better than clustering all the data using fuzzy C means.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

集成聚类聚合从几个单独的聚类算法得到的分区。这可以提高单个方法结果的准确性,并对所应用方法的可变性提供鲁棒性。定理表明,通过使用进化博弈论方法,可以非常有效地找到优势集(聚类)。在一个包含约400万数据的MRI数据集上进行了详细的实验。分布式优势集框架生成的分区质量略好于使用模糊C均值聚类所有数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dominant Sets as a Framework for Cluster Ensembles: An Evolutionary Game Theory Approach
Ensemble clustering aggregates partitions obtained from several individual clustering algorithms. This can improve the accuracy of results from individual methods and provide robustness against variability in the methods applied. Theorems show one can find dominant sets (clusters) very efficiently by using an evolutionary game theoretic approach. Experiments on an MRI data set consisting of about 4 million data are detailed. The distributed dominant set framework generates partitions of quality slightly better than clustering all the data using fuzzy C means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信