椭圆算子的联合谱流及其指标的局部化

Yosuke Kubota
{"title":"椭圆算子的联合谱流及其指标的局部化","authors":"Yosuke Kubota","doi":"10.2140/akt.2016.1.43","DOIUrl":null,"url":null,"abstract":"We introduce the notion of the joint spectral flow, which is a generalization of the spectral flow, by using Segal's model of the connective $K$-theory spectrum. We apply it for some localization results of indices motivated by Witten's deformation of Dirac operators and rephrase some analytic techniques in terms of topology.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The Joint Spectral Flow and Localization of the Indices of Elliptic Operators\",\"authors\":\"Yosuke Kubota\",\"doi\":\"10.2140/akt.2016.1.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of the joint spectral flow, which is a generalization of the spectral flow, by using Segal's model of the connective $K$-theory spectrum. We apply it for some localization results of indices motivated by Witten's deformation of Dirac operators and rephrase some analytic techniques in terms of topology.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2016.1.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2016.1.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

利用Segal的连接K理论谱模型,引入了联合谱流的概念,它是谱流的推广。我们将其应用于一些由狄拉克算子的Witten变形驱动的指标的局部化结果,并从拓扑学的角度重新表述了一些解析技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Joint Spectral Flow and Localization of the Indices of Elliptic Operators
We introduce the notion of the joint spectral flow, which is a generalization of the spectral flow, by using Segal's model of the connective $K$-theory spectrum. We apply it for some localization results of indices motivated by Witten's deformation of Dirac operators and rephrase some analytic techniques in terms of topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信