风电机组频率加权模型预测控制

Martin Klauco, Niels Kjølstad Poulsen, M. Mirzaei, H. Niemann
{"title":"风电机组频率加权模型预测控制","authors":"Martin Klauco, Niels Kjølstad Poulsen, M. Mirzaei, H. Niemann","doi":"10.1109/PC.2013.6581435","DOIUrl":null,"url":null,"abstract":"This work is focused on applying frequency weighted model predictive control (FMPC) on three blade horizontal axis wind turbine (HAWT). A wind turbine is a very complex, non-linear system influenced by a stochastic wind speed variation. The reduced dynamics considered in this work are the rotational degree of freedom of the rotor and the tower for-aft movement. The MPC design is based on a receding horizon policy and a linearised model of the wind turbine. Due to the change of dynamics according to wind speed, several linearisation points must be considered and the control design adjusted accordingly. In practice is very hard to measure the effective wind speed, this quantity will be estimated using measurements from the turbine itself. For this purpose stationary predictive Kalman filter has been used. Stochastic simulations of the wind turbine behaviour with applied frequency weighted model predictive controller are presented. Statistical comparison between frequency weighted MPC, standard MPC and baseline PI controller is shown as well.","PeriodicalId":232418,"journal":{"name":"2013 International Conference on Process Control (PC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frequency weighted model predictive control of wind turbine\",\"authors\":\"Martin Klauco, Niels Kjølstad Poulsen, M. Mirzaei, H. Niemann\",\"doi\":\"10.1109/PC.2013.6581435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is focused on applying frequency weighted model predictive control (FMPC) on three blade horizontal axis wind turbine (HAWT). A wind turbine is a very complex, non-linear system influenced by a stochastic wind speed variation. The reduced dynamics considered in this work are the rotational degree of freedom of the rotor and the tower for-aft movement. The MPC design is based on a receding horizon policy and a linearised model of the wind turbine. Due to the change of dynamics according to wind speed, several linearisation points must be considered and the control design adjusted accordingly. In practice is very hard to measure the effective wind speed, this quantity will be estimated using measurements from the turbine itself. For this purpose stationary predictive Kalman filter has been used. Stochastic simulations of the wind turbine behaviour with applied frequency weighted model predictive controller are presented. Statistical comparison between frequency weighted MPC, standard MPC and baseline PI controller is shown as well.\",\"PeriodicalId\":232418,\"journal\":{\"name\":\"2013 International Conference on Process Control (PC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Process Control (PC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PC.2013.6581435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2013.6581435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了频率加权模型预测控制(FMPC)在三叶片水平轴风力机中的应用。风力发电机是一个非常复杂的非线性系统,受随机风速变化的影响。在这项工作中考虑的简化动力学是转子的旋转自由度和塔的尾部运动。MPC的设计基于地平线后退策略和风力涡轮机的线性化模型。由于风速对动力学的影响,必须考虑多个线性化点,并对控制设计进行相应的调整。在实际中很难测量有效风速,这个量将使用涡轮机本身的测量来估计。为此,采用了平稳预测卡尔曼滤波。提出了应用频率加权模型预测控制器对风力发电机组性能进行随机仿真的方法。并对频率加权MPC、标准MPC和基准PI控制器进行了统计比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency weighted model predictive control of wind turbine
This work is focused on applying frequency weighted model predictive control (FMPC) on three blade horizontal axis wind turbine (HAWT). A wind turbine is a very complex, non-linear system influenced by a stochastic wind speed variation. The reduced dynamics considered in this work are the rotational degree of freedom of the rotor and the tower for-aft movement. The MPC design is based on a receding horizon policy and a linearised model of the wind turbine. Due to the change of dynamics according to wind speed, several linearisation points must be considered and the control design adjusted accordingly. In practice is very hard to measure the effective wind speed, this quantity will be estimated using measurements from the turbine itself. For this purpose stationary predictive Kalman filter has been used. Stochastic simulations of the wind turbine behaviour with applied frequency weighted model predictive controller are presented. Statistical comparison between frequency weighted MPC, standard MPC and baseline PI controller is shown as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信