用线性伽罗群分解有限域上的多项式:一个加性组合方法

Zeyu Guo
{"title":"用线性伽罗群分解有限域上的多项式:一个加性组合方法","authors":"Zeyu Guo","doi":"10.4230/LIPIcs.MFCS.2020.42","DOIUrl":null,"url":null,"abstract":"Let $\\tilde{f}(X)\\in\\mathbb{Z}[X]$ be a degree-$n$ polynomial such that $f(X):=\\tilde{f}(X)\\bmod p$ factorizes into $n$ distinct linear factors over $\\mathbb{F}_p$. We study the problem of deterministically factoring $f(X)$ over $\\mathbb{F}_p$ given $\\tilde{f}(X)$. Under the generalized Riemann hypothesis (GRH), we give an improved deterministic algorithm that computes the complete factorization of $f(X)$ in the case that the Galois group of $\\tilde{f}(X)$ is (permutation isomorphic to) a linear group $G\\leq \\mathrm{GL}(V)$ on the set $S$ of roots of $\\tilde{f}(X)$, where $V$ is a finite-dimensional vector space over a finite field $\\mathbb{F}$ and $S$ is identified with a subset of $V$. In particular, when $|S|=|V|^{\\Omega(1)}$, the algorithm runs in time polynomial in $n^{\\log n/(\\log\\log\\log\\log n)^{1/3}}$ and the size of the input, improving Evdokimov's algorithm. Our result also applies to a general Galois group $G$ when combined with a recent algorithm of the author. \nTo prove our main result, we introduce a family of objects called linear $m$-schemes and reduce the problem of factoring $f(X)$ to a combinatorial problem about these objects. We then apply techniques from additive combinatorics to obtain an improved bound. Our techniques may be of independent interest.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factoring Polynomials over Finite Fields with Linear Galois Groups: An Additive Combinatorics Approach\",\"authors\":\"Zeyu Guo\",\"doi\":\"10.4230/LIPIcs.MFCS.2020.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\tilde{f}(X)\\\\in\\\\mathbb{Z}[X]$ be a degree-$n$ polynomial such that $f(X):=\\\\tilde{f}(X)\\\\bmod p$ factorizes into $n$ distinct linear factors over $\\\\mathbb{F}_p$. We study the problem of deterministically factoring $f(X)$ over $\\\\mathbb{F}_p$ given $\\\\tilde{f}(X)$. Under the generalized Riemann hypothesis (GRH), we give an improved deterministic algorithm that computes the complete factorization of $f(X)$ in the case that the Galois group of $\\\\tilde{f}(X)$ is (permutation isomorphic to) a linear group $G\\\\leq \\\\mathrm{GL}(V)$ on the set $S$ of roots of $\\\\tilde{f}(X)$, where $V$ is a finite-dimensional vector space over a finite field $\\\\mathbb{F}$ and $S$ is identified with a subset of $V$. In particular, when $|S|=|V|^{\\\\Omega(1)}$, the algorithm runs in time polynomial in $n^{\\\\log n/(\\\\log\\\\log\\\\log\\\\log n)^{1/3}}$ and the size of the input, improving Evdokimov's algorithm. Our result also applies to a general Galois group $G$ when combined with a recent algorithm of the author. \\nTo prove our main result, we introduce a family of objects called linear $m$-schemes and reduce the problem of factoring $f(X)$ to a combinatorial problem about these objects. We then apply techniques from additive combinatorics to obtain an improved bound. Our techniques may be of independent interest.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.MFCS.2020.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2020.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$\tilde{f}(X)\in\mathbb{Z}[X]$为一个次- $n$多项式,使得$f(X):=\tilde{f}(X)\bmod p$在$\mathbb{F}_p$上分解为$n$不同的线性因子。给定$\tilde{f}(X)$,我们研究了确定性因子分解$f(X)$ / $\mathbb{F}_p$的问题。在广义Riemann假设(GRH)下,我们给出了一种改进的确定性算法,当$\tilde{f}(X)$的伽罗瓦群(置换同构)是$\tilde{f}(X)$的根集合$S$上的线性群$G\leq \mathrm{GL}(V)$时,该算法计算了$f(X)$的完全分解。其中$V$是有限域$\mathbb{F}$上的有限维向量空间,$S$是$V$的一个子集。特别是在$|S|=|V|^{\Omega(1)}$时,算法运行在$n^{\log n/(\log\log\log\log n)^{1/3}}$和输入大小的时间多项式上,改进了Evdokimov的算法。我们的结果也适用于一般伽罗瓦群$G$与作者最近的算法相结合。为了证明我们的主要结果,我们引入了一组称为线性$m$ -方案的对象,并将分解$f(X)$问题简化为关于这些对象的组合问题。然后我们应用加性组合学的技术来得到一个改进的界。我们的技术可能有独立的利益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factoring Polynomials over Finite Fields with Linear Galois Groups: An Additive Combinatorics Approach
Let $\tilde{f}(X)\in\mathbb{Z}[X]$ be a degree-$n$ polynomial such that $f(X):=\tilde{f}(X)\bmod p$ factorizes into $n$ distinct linear factors over $\mathbb{F}_p$. We study the problem of deterministically factoring $f(X)$ over $\mathbb{F}_p$ given $\tilde{f}(X)$. Under the generalized Riemann hypothesis (GRH), we give an improved deterministic algorithm that computes the complete factorization of $f(X)$ in the case that the Galois group of $\tilde{f}(X)$ is (permutation isomorphic to) a linear group $G\leq \mathrm{GL}(V)$ on the set $S$ of roots of $\tilde{f}(X)$, where $V$ is a finite-dimensional vector space over a finite field $\mathbb{F}$ and $S$ is identified with a subset of $V$. In particular, when $|S|=|V|^{\Omega(1)}$, the algorithm runs in time polynomial in $n^{\log n/(\log\log\log\log n)^{1/3}}$ and the size of the input, improving Evdokimov's algorithm. Our result also applies to a general Galois group $G$ when combined with a recent algorithm of the author. To prove our main result, we introduce a family of objects called linear $m$-schemes and reduce the problem of factoring $f(X)$ to a combinatorial problem about these objects. We then apply techniques from additive combinatorics to obtain an improved bound. Our techniques may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信