随机序列定义的贝叶斯方法及其在统计推断中的应用

Hayato Takahashi
{"title":"随机序列定义的贝叶斯方法及其在统计推断中的应用","authors":"Hayato Takahashi","doi":"10.1109/ISIT.2006.261937","DOIUrl":null,"url":null,"abstract":"We introduce a universal Bayes test, which is a Bayesian version of Martin-Lof test. Then we define random sequences with respect to parametric models based on our universal Bayes test. We state some theorems related to Bayesian statistical inference in terms of random sequence","PeriodicalId":115298,"journal":{"name":"2006 IEEE International Symposium on Information Theory","volume":"21 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian approach to a definition of random sequences and its applications to statistical inference\",\"authors\":\"Hayato Takahashi\",\"doi\":\"10.1109/ISIT.2006.261937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a universal Bayes test, which is a Bayesian version of Martin-Lof test. Then we define random sequences with respect to parametric models based on our universal Bayes test. We state some theorems related to Bayesian statistical inference in terms of random sequence\",\"PeriodicalId\":115298,\"journal\":{\"name\":\"2006 IEEE International Symposium on Information Theory\",\"volume\":\"21 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2006.261937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2006.261937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们引入了一个普适贝叶斯检验,它是Martin-Lof检验的贝叶斯版本。然后,我们根据我们的通用贝叶斯检验定义了参数模型的随机序列。本文从随机序列的角度论述了贝叶斯统计推断的几个相关定理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian approach to a definition of random sequences and its applications to statistical inference
We introduce a universal Bayes test, which is a Bayesian version of Martin-Lof test. Then we define random sequences with respect to parametric models based on our universal Bayes test. We state some theorems related to Bayesian statistical inference in terms of random sequence
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信