Li Yue, Fu Yu, Bai Hao, Y. Zhiyong, He Xiaomeng, Jin Qinyuan
{"title":"大规模光伏消纳的低压交直流混合配电网时空协调优化方法","authors":"Li Yue, Fu Yu, Bai Hao, Y. Zhiyong, He Xiaomeng, Jin Qinyuan","doi":"10.1109/ACFPE56003.2022.9952186","DOIUrl":null,"url":null,"abstract":"A large number of distributed photovoltaic grids have exacerbated the problems of voltage limit, three-phase imbalance and power reversal of the low-voltage distribution network, bringing challenges to the stable operation of the distribution network. Aiming at the problem of absorbing a high proportion of distributed photovoltaics, this paper proposes a space-time coordination based on Voltage Source Converter (VSC) and energy storage by exploiting the power regulation potential of low-voltage AC and DC distribution networks and energy storage. Optimization. Firstly, the power transfer characteristics of VSC and energy storage at the spatial and temporal levels are analyzed; secondly, with the goal of minimizing PV cut-off and network loss, and energy storage and VSC power as optimization variables, a low-voltage AC-DC hybrid distribution is established. Finally, taking a typical low-voltage AC-DC hybrid distribution network as an example, the validity of the proposed method is proved by simulation, and the photovoltaic capacity of the low-voltage distribution network is improved.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-voltage AC-DC hybrid distribution network for large-scale photovoltaic consumption Space-time Coordinated Optimization Method\",\"authors\":\"Li Yue, Fu Yu, Bai Hao, Y. Zhiyong, He Xiaomeng, Jin Qinyuan\",\"doi\":\"10.1109/ACFPE56003.2022.9952186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large number of distributed photovoltaic grids have exacerbated the problems of voltage limit, three-phase imbalance and power reversal of the low-voltage distribution network, bringing challenges to the stable operation of the distribution network. Aiming at the problem of absorbing a high proportion of distributed photovoltaics, this paper proposes a space-time coordination based on Voltage Source Converter (VSC) and energy storage by exploiting the power regulation potential of low-voltage AC and DC distribution networks and energy storage. Optimization. Firstly, the power transfer characteristics of VSC and energy storage at the spatial and temporal levels are analyzed; secondly, with the goal of minimizing PV cut-off and network loss, and energy storage and VSC power as optimization variables, a low-voltage AC-DC hybrid distribution is established. Finally, taking a typical low-voltage AC-DC hybrid distribution network as an example, the validity of the proposed method is proved by simulation, and the photovoltaic capacity of the low-voltage distribution network is improved.\",\"PeriodicalId\":198086,\"journal\":{\"name\":\"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACFPE56003.2022.9952186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACFPE56003.2022.9952186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-voltage AC-DC hybrid distribution network for large-scale photovoltaic consumption Space-time Coordinated Optimization Method
A large number of distributed photovoltaic grids have exacerbated the problems of voltage limit, three-phase imbalance and power reversal of the low-voltage distribution network, bringing challenges to the stable operation of the distribution network. Aiming at the problem of absorbing a high proportion of distributed photovoltaics, this paper proposes a space-time coordination based on Voltage Source Converter (VSC) and energy storage by exploiting the power regulation potential of low-voltage AC and DC distribution networks and energy storage. Optimization. Firstly, the power transfer characteristics of VSC and energy storage at the spatial and temporal levels are analyzed; secondly, with the goal of minimizing PV cut-off and network loss, and energy storage and VSC power as optimization variables, a low-voltage AC-DC hybrid distribution is established. Finally, taking a typical low-voltage AC-DC hybrid distribution network as an example, the validity of the proposed method is proved by simulation, and the photovoltaic capacity of the low-voltage distribution network is improved.