SLA约束下基于强化学习的云计算混合作业调度方案

Zhiping Peng, Delong Cui, Yuanjia Ma, Jianbin Xiong, Bo Xu, Weiwei Lin
{"title":"SLA约束下基于强化学习的云计算混合作业调度方案","authors":"Zhiping Peng, Delong Cui, Yuanjia Ma, Jianbin Xiong, Bo Xu, Weiwei Lin","doi":"10.1109/CSCloud.2016.16","DOIUrl":null,"url":null,"abstract":"Job scheduling is a necessary prerequisite for performance optimization and resource management in the cloud computing system. Focusing on accurate scaled cloud computing environment and efficient job scheduling under Virtual Machine (VM) resource and Server Level Agreement (SLA) constraints, we introduce the architecture of cloud computing platform and optimization job scheduling scheme in this study. The system model is comprised of clearly defined separate constituent parts, including portal, job scheduler, and resources pool. By analyzing the execution process of user jobs, we designed a novel job scheduling scheme based on reinforcement learning to minimize the makespan and Average Waiting Time (AWT) under the VM resource and deadline constraints, and employ parallel multi-age parallel technologies to balance the exploration and exploitation in learning process and accelerate the convergence of Q-learning algorithm. Both statistical and numerical analysis results demonstrate the efficiency of the proposed job scheduling scheme.","PeriodicalId":410477,"journal":{"name":"2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud)","volume":"42 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Reinforcement Learning-Based Mixed Job Scheduler Scheme for Cloud Computing under SLA Constraint\",\"authors\":\"Zhiping Peng, Delong Cui, Yuanjia Ma, Jianbin Xiong, Bo Xu, Weiwei Lin\",\"doi\":\"10.1109/CSCloud.2016.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Job scheduling is a necessary prerequisite for performance optimization and resource management in the cloud computing system. Focusing on accurate scaled cloud computing environment and efficient job scheduling under Virtual Machine (VM) resource and Server Level Agreement (SLA) constraints, we introduce the architecture of cloud computing platform and optimization job scheduling scheme in this study. The system model is comprised of clearly defined separate constituent parts, including portal, job scheduler, and resources pool. By analyzing the execution process of user jobs, we designed a novel job scheduling scheme based on reinforcement learning to minimize the makespan and Average Waiting Time (AWT) under the VM resource and deadline constraints, and employ parallel multi-age parallel technologies to balance the exploration and exploitation in learning process and accelerate the convergence of Q-learning algorithm. Both statistical and numerical analysis results demonstrate the efficiency of the proposed job scheduling scheme.\",\"PeriodicalId\":410477,\"journal\":{\"name\":\"2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud)\",\"volume\":\"42 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCloud.2016.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2016.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

作业调度是云计算系统进行性能优化和资源管理的必要前提。针对云计算环境在虚拟机(VM)资源和服务器级别协议(SLA)约束下的精确伸缩和高效作业调度问题,介绍了云计算平台的体系结构和优化作业调度方案。系统模型由明确定义的独立组成部分组成,包括门户、作业调度器和资源池。通过对用户作业执行过程的分析,设计了一种基于强化学习的作业调度方案,在虚拟机资源和截止时间约束下最小化makespan和平均等待时间(AWT),并采用并行多年龄并行技术平衡学习过程中的探索和利用,加快Q-learning算法的收敛速度。统计分析和数值分析结果都证明了所提出的作业调度方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reinforcement Learning-Based Mixed Job Scheduler Scheme for Cloud Computing under SLA Constraint
Job scheduling is a necessary prerequisite for performance optimization and resource management in the cloud computing system. Focusing on accurate scaled cloud computing environment and efficient job scheduling under Virtual Machine (VM) resource and Server Level Agreement (SLA) constraints, we introduce the architecture of cloud computing platform and optimization job scheduling scheme in this study. The system model is comprised of clearly defined separate constituent parts, including portal, job scheduler, and resources pool. By analyzing the execution process of user jobs, we designed a novel job scheduling scheme based on reinforcement learning to minimize the makespan and Average Waiting Time (AWT) under the VM resource and deadline constraints, and employ parallel multi-age parallel technologies to balance the exploration and exploitation in learning process and accelerate the convergence of Q-learning algorithm. Both statistical and numerical analysis results demonstrate the efficiency of the proposed job scheduling scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信