带有自动状态选择的动态贝叶斯网络的活动识别

J. Muncaster, Yunqian Ma
{"title":"带有自动状态选择的动态贝叶斯网络的活动识别","authors":"J. Muncaster, Yunqian Ma","doi":"10.1109/WMVC.2007.5","DOIUrl":null,"url":null,"abstract":"Applying advanced video technology to understand activity and intent is becoming increasingly important for intelligent video surveillance. We present a general model of a d-level dynamic Bayesian network to perform complex event recognition. The levels of the network are constrained to enforce state hierarchy while the dth level models the duration of simplest event. Moreover, in this paper we propose to use the deterministic annealing clustering method to automatically discover the states for the observable levels. We used real world data sets to show the effectiveness of our proposed method.","PeriodicalId":177842,"journal":{"name":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Activity Recognition using Dynamic Bayesian Networks with Automatic State Selection\",\"authors\":\"J. Muncaster, Yunqian Ma\",\"doi\":\"10.1109/WMVC.2007.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applying advanced video technology to understand activity and intent is becoming increasingly important for intelligent video surveillance. We present a general model of a d-level dynamic Bayesian network to perform complex event recognition. The levels of the network are constrained to enforce state hierarchy while the dth level models the duration of simplest event. Moreover, in this paper we propose to use the deterministic annealing clustering method to automatically discover the states for the observable levels. We used real world data sets to show the effectiveness of our proposed method.\",\"PeriodicalId\":177842,\"journal\":{\"name\":\"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMVC.2007.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2007.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

应用先进的视频技术来理解活动和意图对于智能视频监控变得越来越重要。提出了一种用于复杂事件识别的d级动态贝叶斯网络的通用模型。网络的层次被约束以执行状态层次,而第d层对最简单事件的持续时间进行建模。此外,本文还提出了采用确定性退火聚类方法来自动发现可观测能级的状态。我们使用真实世界的数据集来证明我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity Recognition using Dynamic Bayesian Networks with Automatic State Selection
Applying advanced video technology to understand activity and intent is becoming increasingly important for intelligent video surveillance. We present a general model of a d-level dynamic Bayesian network to perform complex event recognition. The levels of the network are constrained to enforce state hierarchy while the dth level models the duration of simplest event. Moreover, in this paper we propose to use the deterministic annealing clustering method to automatically discover the states for the observable levels. We used real world data sets to show the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信