{"title":"仍然是直觉:先验主义的坚持","authors":"Manuel Antonio Monroy Correa","doi":"10.48160/18532330me9.216","DOIUrl":null,"url":null,"abstract":"En su obra mayor, El mundo como voluntad y representación, Arthur Schopenhauer (2005) consideró que las matemáticas no podían tener un carácter de verdad como procesos nacidos de la experiencia, siguiendo en este sentido a Immanuel Kant, quien identificó la intuición del espacio y el tiempo como apriorísticos y dejó para la experiencia (a posteriori) el proceso de la racionalidad y la explicación de los fenómenos. Sin embargo, a principios del siglo XX, A. Whitehead y Bertrand Russell se esforzaron por dar un fundamento a las matemáticas en la lógica, cuyo proceso racional a posteriori contradice el hecho intuitivo de donde las matemáticas tienen su fundamento como verdades de la intuición. La demostración matemática no significaría un fundamento de las mismas, si ha de hallarse un sentido de verdad para las matemáticas.","PeriodicalId":174960,"journal":{"name":"Metatheoria – Revista de Filosofía e Historia de la Ciencia","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Todavía la intuición: la persistencia del apriorismo\",\"authors\":\"Manuel Antonio Monroy Correa\",\"doi\":\"10.48160/18532330me9.216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En su obra mayor, El mundo como voluntad y representación, Arthur Schopenhauer (2005) consideró que las matemáticas no podían tener un carácter de verdad como procesos nacidos de la experiencia, siguiendo en este sentido a Immanuel Kant, quien identificó la intuición del espacio y el tiempo como apriorísticos y dejó para la experiencia (a posteriori) el proceso de la racionalidad y la explicación de los fenómenos. Sin embargo, a principios del siglo XX, A. Whitehead y Bertrand Russell se esforzaron por dar un fundamento a las matemáticas en la lógica, cuyo proceso racional a posteriori contradice el hecho intuitivo de donde las matemáticas tienen su fundamento como verdades de la intuición. La demostración matemática no significaría un fundamento de las mismas, si ha de hallarse un sentido de verdad para las matemáticas.\",\"PeriodicalId\":174960,\"journal\":{\"name\":\"Metatheoria – Revista de Filosofía e Historia de la Ciencia\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metatheoria – Revista de Filosofía e Historia de la Ciencia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48160/18532330me9.216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metatheoria – Revista de Filosofía e Historia de la Ciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48160/18532330me9.216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Todavía la intuición: la persistencia del apriorismo
En su obra mayor, El mundo como voluntad y representación, Arthur Schopenhauer (2005) consideró que las matemáticas no podían tener un carácter de verdad como procesos nacidos de la experiencia, siguiendo en este sentido a Immanuel Kant, quien identificó la intuición del espacio y el tiempo como apriorísticos y dejó para la experiencia (a posteriori) el proceso de la racionalidad y la explicación de los fenómenos. Sin embargo, a principios del siglo XX, A. Whitehead y Bertrand Russell se esforzaron por dar un fundamento a las matemáticas en la lógica, cuyo proceso racional a posteriori contradice el hecho intuitivo de donde las matemáticas tienen su fundamento como verdades de la intuición. La demostración matemática no significaría un fundamento de las mismas, si ha de hallarse un sentido de verdad para las matemáticas.