压缩感知和储层计算中随机投影的多模波导激光散斑

G. Sefler, U. Paudel, T. J. Shaw, D. Monahan, A. Scofield, S. Estella, L. Johansson, G. Valley
{"title":"压缩感知和储层计算中随机投影的多模波导激光散斑","authors":"G. Sefler, U. Paudel, T. J. Shaw, D. Monahan, A. Scofield, S. Estella, L. Johansson, G. Valley","doi":"10.1109/IPCon.2019.8908273","DOIUrl":null,"url":null,"abstract":"Detection of wideband RF signals has applications in sensing and communications. When the signals of interest are sparse, compressive sensing (CS) provides a sub-Nyquist sampling strategy with potential size, weight, and power savings. The critical element in a CS receiver is the device that produces the wideband CS measurement matrix (MM), a MxN matrix with M << N satisfying certain properties [1]. We have shown that passive optical speckle in multimode waveguides provides excellent MMs for CS. The M rows of the MM are obtained from M photodetectors placed at different locations within the output speckle pattern. A range of algorithms can be used to recover the sparse input signal from the resulting measurement vector. We have experimentally demonstrated two speckle-based CS systems: (1) a real-time system with M = 16 implemented using multimode fiber (MMF) that recovers RF frequency, amplitude, and phase, and (2) a simplified spectrometer system implemented using a multimode planar waveguide on a silicon photonic chip that detects only RF frequency and amplitude.","PeriodicalId":314151,"journal":{"name":"2019 IEEE Photonics Conference (IPC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser Speckle in Multimode Waveguides for Random Projections in Compressive Sensing and Reservoir Computing\",\"authors\":\"G. Sefler, U. Paudel, T. J. Shaw, D. Monahan, A. Scofield, S. Estella, L. Johansson, G. Valley\",\"doi\":\"10.1109/IPCon.2019.8908273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of wideband RF signals has applications in sensing and communications. When the signals of interest are sparse, compressive sensing (CS) provides a sub-Nyquist sampling strategy with potential size, weight, and power savings. The critical element in a CS receiver is the device that produces the wideband CS measurement matrix (MM), a MxN matrix with M << N satisfying certain properties [1]. We have shown that passive optical speckle in multimode waveguides provides excellent MMs for CS. The M rows of the MM are obtained from M photodetectors placed at different locations within the output speckle pattern. A range of algorithms can be used to recover the sparse input signal from the resulting measurement vector. We have experimentally demonstrated two speckle-based CS systems: (1) a real-time system with M = 16 implemented using multimode fiber (MMF) that recovers RF frequency, amplitude, and phase, and (2) a simplified spectrometer system implemented using a multimode planar waveguide on a silicon photonic chip that detects only RF frequency and amplitude.\",\"PeriodicalId\":314151,\"journal\":{\"name\":\"2019 IEEE Photonics Conference (IPC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPCon.2019.8908273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCon.2019.8908273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

宽带射频信号的检测在传感和通信领域有着广泛的应用。当感兴趣的信号稀疏时,压缩感知(CS)提供了一种亚奈奎斯特采样策略,具有潜在的大小、重量和功耗节省。CS接收机的关键元件是产生宽带CS测量矩阵(MM)的器件,该矩阵是M << N满足某些性质[1]的MxN矩阵。我们已经证明了多模波导中的无源光散斑为CS提供了良好的mm。MM的M行是由放置在输出散斑模式内不同位置的M个光电探测器获得的。可以使用一系列算法从结果测量向量中恢复稀疏输入信号。我们通过实验展示了两种基于散斑的CS系统:(1)使用多模光纤(MMF)实现的M = 16的实时系统,该系统可以恢复射频频率、幅度和相位;(2)使用硅光子芯片上的多模平面波导实现的简化光谱仪系统,该系统仅检测射频频率和幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser Speckle in Multimode Waveguides for Random Projections in Compressive Sensing and Reservoir Computing
Detection of wideband RF signals has applications in sensing and communications. When the signals of interest are sparse, compressive sensing (CS) provides a sub-Nyquist sampling strategy with potential size, weight, and power savings. The critical element in a CS receiver is the device that produces the wideband CS measurement matrix (MM), a MxN matrix with M << N satisfying certain properties [1]. We have shown that passive optical speckle in multimode waveguides provides excellent MMs for CS. The M rows of the MM are obtained from M photodetectors placed at different locations within the output speckle pattern. A range of algorithms can be used to recover the sparse input signal from the resulting measurement vector. We have experimentally demonstrated two speckle-based CS systems: (1) a real-time system with M = 16 implemented using multimode fiber (MMF) that recovers RF frequency, amplitude, and phase, and (2) a simplified spectrometer system implemented using a multimode planar waveguide on a silicon photonic chip that detects only RF frequency and amplitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信