基于经验模态分解的adaboost-反向传播神经网络风速预报方法

Ye Ren, Xueheng Qiu, P. N. Suganthan
{"title":"基于经验模态分解的adaboost-反向传播神经网络风速预报方法","authors":"Ye Ren, Xueheng Qiu, P. N. Suganthan","doi":"10.1109/CIEL.2014.7015741","DOIUrl":null,"url":null,"abstract":"Wind speed forecasting is a popular research direction in renewable energy and computational intelligence. Ensemble forecasting and hybrid forecasting models are widely used in wind speed forecasting. This paper proposes a novel ensemble forecasting model by combining Empirical mode decomposition (EMD), Adaptive boosting (AdaBoost) and Backpropagation Neural Network (BPNN) together. The proposed model is compared with six benchmark models: persistent, AdaBoost with regression tree, BPNN, AdaBoost-BPNN, EMD-BPNN and EMD-AdaBoost with regression tree. The comparisons undergoes several statistical tests and the tests show that the proposed EMD-AdaBoost- BPNN model outperformed the other models significantly. The forecasting error of the proposed model also shows significant randomness.","PeriodicalId":229765,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting\",\"authors\":\"Ye Ren, Xueheng Qiu, P. N. Suganthan\",\"doi\":\"10.1109/CIEL.2014.7015741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind speed forecasting is a popular research direction in renewable energy and computational intelligence. Ensemble forecasting and hybrid forecasting models are widely used in wind speed forecasting. This paper proposes a novel ensemble forecasting model by combining Empirical mode decomposition (EMD), Adaptive boosting (AdaBoost) and Backpropagation Neural Network (BPNN) together. The proposed model is compared with six benchmark models: persistent, AdaBoost with regression tree, BPNN, AdaBoost-BPNN, EMD-BPNN and EMD-AdaBoost with regression tree. The comparisons undergoes several statistical tests and the tests show that the proposed EMD-AdaBoost- BPNN model outperformed the other models significantly. The forecasting error of the proposed model also shows significant randomness.\",\"PeriodicalId\":229765,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIEL.2014.7015741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEL.2014.7015741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

风速预报是可再生能源和计算智能领域的一个热门研究方向。集合预报和混合预报模型在风速预报中得到了广泛的应用。本文提出了一种结合经验模态分解(EMD)、自适应增强(AdaBoost)和反向传播神经网络(BPNN)的集成预测模型。将该模型与persistent、AdaBoost(带回归树)、BPNN、AdaBoost-BPNN、EMD-BPNN和EMD-AdaBoost(带回归树)6个基准模型进行了比较。对比结果表明,EMD-AdaBoost- BPNN模型的性能明显优于其他模型。该模型的预测误差也表现出显著的随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting
Wind speed forecasting is a popular research direction in renewable energy and computational intelligence. Ensemble forecasting and hybrid forecasting models are widely used in wind speed forecasting. This paper proposes a novel ensemble forecasting model by combining Empirical mode decomposition (EMD), Adaptive boosting (AdaBoost) and Backpropagation Neural Network (BPNN) together. The proposed model is compared with six benchmark models: persistent, AdaBoost with regression tree, BPNN, AdaBoost-BPNN, EMD-BPNN and EMD-AdaBoost with regression tree. The comparisons undergoes several statistical tests and the tests show that the proposed EMD-AdaBoost- BPNN model outperformed the other models significantly. The forecasting error of the proposed model also shows significant randomness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信