渐进式结构中具有随机跳跃的部分可观测平均场随机系统的一般极大值原理

Tian Chen, Zhen Wu
{"title":"渐进式结构中具有随机跳跃的部分可观测平均场随机系统的一般极大值原理","authors":"Tian Chen, Zhen Wu","doi":"10.3934/mcrf.2022012","DOIUrl":null,"url":null,"abstract":"We study the progressive optimal control for partially observed stochastic system of mean-field type with random jumps. The cost function and the observation are also of mean-field type. The control is allowed to enter the diffusion, jump coefficient and the observation. The control domain need not be convex. We obtain the maximum principle for the partially observable progressive optimal control by a special spike variation. The maximum principle in the progressive structure is different from the classical case.","PeriodicalId":418020,"journal":{"name":"Mathematical Control & Related Fields","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A general maximum principle for partially observed mean-field stochastic system with random jumps in progressive structure\",\"authors\":\"Tian Chen, Zhen Wu\",\"doi\":\"10.3934/mcrf.2022012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the progressive optimal control for partially observed stochastic system of mean-field type with random jumps. The cost function and the observation are also of mean-field type. The control is allowed to enter the diffusion, jump coefficient and the observation. The control domain need not be convex. We obtain the maximum principle for the partially observable progressive optimal control by a special spike variation. The maximum principle in the progressive structure is different from the classical case.\",\"PeriodicalId\":418020,\"journal\":{\"name\":\"Mathematical Control & Related Fields\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control & Related Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control & Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mcrf.2022012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了具有随机跳跃的平均场型部分观测随机系统的渐进式最优控制问题。代价函数和观测值也是平均场型。控制允许进入扩散、跳跃系数和观测。控制域不必是凸的。通过一个特殊的尖峰变化,得到了部分可观察渐进最优控制的极大值原理。递进结构中的最大值原则不同于经典情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general maximum principle for partially observed mean-field stochastic system with random jumps in progressive structure
We study the progressive optimal control for partially observed stochastic system of mean-field type with random jumps. The cost function and the observation are also of mean-field type. The control is allowed to enter the diffusion, jump coefficient and the observation. The control domain need not be convex. We obtain the maximum principle for the partially observable progressive optimal control by a special spike variation. The maximum principle in the progressive structure is different from the classical case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信