边界层过程在夏季北极气旋中的作用

Hannah L. Croad, J. Methven, B. Harvey, S. Keeley, A. Volonté
{"title":"边界层过程在夏季北极气旋中的作用","authors":"Hannah L. Croad, J. Methven, B. Harvey, S. Keeley, A. Volonté","doi":"10.5194/wcd-4-617-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Arctic cyclones are the most energetic weather systems in the Arctic, producing strong winds and precipitation that present major weather hazards. In summer, when the sea ice cover is reduced and more mobile, Arctic cyclones can have large impacts on ocean waves and sea ice. While the development of mid-latitude cyclones is known to be dependent on boundary layer (BL) turbulent fluxes, the dynamics of summer-time Arctic cyclones and their dependence on surface exchange processes have not been investigated. The purpose of this study is to characterise the BL processes acting in summer-time Arctic cyclones and understand their influence on cyclone evolution. The study focuses on two cyclone case studies, each characterised by a different structure during growth in the Arctic: (A) low-level-dominant vorticity (warm-core) structure and (B) upper-level-dominant vorticity (cold-core) structure, linked with a tropopause polar vortex. A potential vorticity (PV) framework is used to diagnose the BL processes in model runs from the ECMWF Integrated Forecasting System model. Both cyclones are associated with frictional Ekman pumping and downward sensible heat fluxes over sea ice. However, a third process, the frictional baroclinic generation of PV, acts differently in A and B due to differences in their low-level temperature structures. Positive PV is generated in Cyclone A near the bent-back warm front, like in typical mid-latitude cyclones. However, the same process produces negative PV tendencies in B, shown to be a consequence of the vertically aligned axisymmetric cold-core structure. This frictional process also acts to cool the lower troposphere, reducing the warm-core anomaly in A and amplifying the cold-core anomaly in B. Both cyclones attain a vertically aligned cold-core structure that persists for several days after maximum intensity, which is consistent with cooling from frictional Ekman pumping, frictional baroclinic PV generation, and downward sensible heat fluxes. This may help to explain the longevity of isolated cold-core Arctic cyclones with columnar vorticity structure.\n","PeriodicalId":383272,"journal":{"name":"Weather and Climate Dynamics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The role of boundary layer processes in summer-time Arctic cyclones\",\"authors\":\"Hannah L. Croad, J. Methven, B. Harvey, S. Keeley, A. Volonté\",\"doi\":\"10.5194/wcd-4-617-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Arctic cyclones are the most energetic weather systems in the Arctic, producing strong winds and precipitation that present major weather hazards. In summer, when the sea ice cover is reduced and more mobile, Arctic cyclones can have large impacts on ocean waves and sea ice. While the development of mid-latitude cyclones is known to be dependent on boundary layer (BL) turbulent fluxes, the dynamics of summer-time Arctic cyclones and their dependence on surface exchange processes have not been investigated. The purpose of this study is to characterise the BL processes acting in summer-time Arctic cyclones and understand their influence on cyclone evolution. The study focuses on two cyclone case studies, each characterised by a different structure during growth in the Arctic: (A) low-level-dominant vorticity (warm-core) structure and (B) upper-level-dominant vorticity (cold-core) structure, linked with a tropopause polar vortex. A potential vorticity (PV) framework is used to diagnose the BL processes in model runs from the ECMWF Integrated Forecasting System model. Both cyclones are associated with frictional Ekman pumping and downward sensible heat fluxes over sea ice. However, a third process, the frictional baroclinic generation of PV, acts differently in A and B due to differences in their low-level temperature structures. Positive PV is generated in Cyclone A near the bent-back warm front, like in typical mid-latitude cyclones. However, the same process produces negative PV tendencies in B, shown to be a consequence of the vertically aligned axisymmetric cold-core structure. This frictional process also acts to cool the lower troposphere, reducing the warm-core anomaly in A and amplifying the cold-core anomaly in B. Both cyclones attain a vertically aligned cold-core structure that persists for several days after maximum intensity, which is consistent with cooling from frictional Ekman pumping, frictional baroclinic PV generation, and downward sensible heat fluxes. This may help to explain the longevity of isolated cold-core Arctic cyclones with columnar vorticity structure.\\n\",\"PeriodicalId\":383272,\"journal\":{\"name\":\"Weather and Climate Dynamics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Climate Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/wcd-4-617-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wcd-4-617-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要北极气旋是北极地区最具活力的天气系统,产生强风和降水,造成重大天气灾害。在夏季,当海冰覆盖减少,流动性增强时,北极气旋会对海浪和海冰产生很大的影响。虽然已知中纬度气旋的发展依赖于边界层湍流通量,但夏季北极气旋的动力学及其对地表交换过程的依赖尚未得到研究。本研究的目的是表征在夏季北极气旋中作用的BL过程,并了解它们对气旋演变的影响。该研究侧重于两个气旋案例研究,每个案例都以北极生长过程中的不同结构为特征:(a)低层主导涡度(暖核)结构和(B)高层主导涡度(冷核)结构,与对流层顶极地涡旋有关。在ECMWF综合预报系统模型的基础上,采用位涡度(PV)框架对模型运行中的BL过程进行诊断。这两个气旋都与摩擦埃克曼泵和海冰上向下的感热通量有关。然而,由于a和B的低层温度结构不同,第三种过程,即PV的摩擦斜压产生,作用不同。正PV在气旋A靠近后弯暖锋处产生,就像典型的中纬度气旋一样。然而,同样的过程在B中产生负PV趋势,这表明是垂直排列轴对称冷芯结构的结果。这一摩擦过程也起到冷却对流层下层的作用,减少了A的暖核异常,放大了b的冷核异常。两个气旋在最大强度后都形成了垂直排列的冷核结构,并持续数天,这与摩擦Ekman泵送、摩擦斜压PV产生和向下的感热通量的冷却一致。这可能有助于解释具有柱状涡度结构的孤立冷核北极气旋的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of boundary layer processes in summer-time Arctic cyclones
Abstract. Arctic cyclones are the most energetic weather systems in the Arctic, producing strong winds and precipitation that present major weather hazards. In summer, when the sea ice cover is reduced and more mobile, Arctic cyclones can have large impacts on ocean waves and sea ice. While the development of mid-latitude cyclones is known to be dependent on boundary layer (BL) turbulent fluxes, the dynamics of summer-time Arctic cyclones and their dependence on surface exchange processes have not been investigated. The purpose of this study is to characterise the BL processes acting in summer-time Arctic cyclones and understand their influence on cyclone evolution. The study focuses on two cyclone case studies, each characterised by a different structure during growth in the Arctic: (A) low-level-dominant vorticity (warm-core) structure and (B) upper-level-dominant vorticity (cold-core) structure, linked with a tropopause polar vortex. A potential vorticity (PV) framework is used to diagnose the BL processes in model runs from the ECMWF Integrated Forecasting System model. Both cyclones are associated with frictional Ekman pumping and downward sensible heat fluxes over sea ice. However, a third process, the frictional baroclinic generation of PV, acts differently in A and B due to differences in their low-level temperature structures. Positive PV is generated in Cyclone A near the bent-back warm front, like in typical mid-latitude cyclones. However, the same process produces negative PV tendencies in B, shown to be a consequence of the vertically aligned axisymmetric cold-core structure. This frictional process also acts to cool the lower troposphere, reducing the warm-core anomaly in A and amplifying the cold-core anomaly in B. Both cyclones attain a vertically aligned cold-core structure that persists for several days after maximum intensity, which is consistent with cooling from frictional Ekman pumping, frictional baroclinic PV generation, and downward sensible heat fluxes. This may help to explain the longevity of isolated cold-core Arctic cyclones with columnar vorticity structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信