混合架构下无缝协调快速流的异构算法骨架

M. Goli, H. González-Vélez
{"title":"混合架构下无缝协调快速流的异构算法骨架","authors":"M. Goli, H. González-Vélez","doi":"10.1109/PDP.2013.29","DOIUrl":null,"url":null,"abstract":"Algorithmic skeletons (`skeletons') abstract commonly-used patterns of parallel computation, communication, and interaction. They provide top-down design composition and control inheritance throughout the whole structure. The efficient execution of skeletal applications on a heterogeneous environment has long been of interest to the research community. Arguably, executing a coarse-grained resource-intensive skeletal workloads ought to achieve higher resource utilisation and, ultimately, better job makespan on heterogeneous systems due to the structured parallelism model. This paper presents a heterogeneous OpenCL-based GPU back-end for FastFlow, a widely-used skeletal framework. Our back-end allows the user to easily write any arbitrary OpenCL code inside an heterogeneous algorithmic skeleton and seamlessly control the allocation of OpenCL kernel over the hybrid (CPU/GPU) architecture. Our performance evaluation indicate that a skeletal program which employs our back-end is around one order of magnitude faster than a skeletal parallel program using the traditional homogeneous FastFlow skeletons with the serial version of OpenCL code.","PeriodicalId":202977,"journal":{"name":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Heterogeneous Algorithmic Skeletons for Fast Flow with Seamless Coordination over Hybrid Architectures\",\"authors\":\"M. Goli, H. González-Vélez\",\"doi\":\"10.1109/PDP.2013.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithmic skeletons (`skeletons') abstract commonly-used patterns of parallel computation, communication, and interaction. They provide top-down design composition and control inheritance throughout the whole structure. The efficient execution of skeletal applications on a heterogeneous environment has long been of interest to the research community. Arguably, executing a coarse-grained resource-intensive skeletal workloads ought to achieve higher resource utilisation and, ultimately, better job makespan on heterogeneous systems due to the structured parallelism model. This paper presents a heterogeneous OpenCL-based GPU back-end for FastFlow, a widely-used skeletal framework. Our back-end allows the user to easily write any arbitrary OpenCL code inside an heterogeneous algorithmic skeleton and seamlessly control the allocation of OpenCL kernel over the hybrid (CPU/GPU) architecture. Our performance evaluation indicate that a skeletal program which employs our back-end is around one order of magnitude faster than a skeletal parallel program using the traditional homogeneous FastFlow skeletons with the serial version of OpenCL code.\",\"PeriodicalId\":202977,\"journal\":{\"name\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2013.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2013.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

算法骨架(“骨架”)抽象了并行计算、通信和交互的常用模式。它们在整个结构中提供自顶向下的设计组合和控制继承。在异构环境中高效地执行骨架应用程序一直是研究界感兴趣的问题。可以说,由于结构化并行模型,执行粗粒度资源密集型骨架工作负载应该可以实现更高的资源利用率,并最终在异构系统上获得更好的作业完工时间。本文提出了一个基于opencl的异构GPU后端FastFlow,一个广泛使用的骨架框架。我们的后端允许用户在异构算法框架内轻松编写任意OpenCL代码,并在混合(CPU/GPU)架构上无缝地控制OpenCL内核的分配。我们的性能评估表明,使用我们后端的框架程序比使用传统的同构FastFlow框架和OpenCL代码的串行版本的框架并行程序快一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous Algorithmic Skeletons for Fast Flow with Seamless Coordination over Hybrid Architectures
Algorithmic skeletons (`skeletons') abstract commonly-used patterns of parallel computation, communication, and interaction. They provide top-down design composition and control inheritance throughout the whole structure. The efficient execution of skeletal applications on a heterogeneous environment has long been of interest to the research community. Arguably, executing a coarse-grained resource-intensive skeletal workloads ought to achieve higher resource utilisation and, ultimately, better job makespan on heterogeneous systems due to the structured parallelism model. This paper presents a heterogeneous OpenCL-based GPU back-end for FastFlow, a widely-used skeletal framework. Our back-end allows the user to easily write any arbitrary OpenCL code inside an heterogeneous algorithmic skeleton and seamlessly control the allocation of OpenCL kernel over the hybrid (CPU/GPU) architecture. Our performance evaluation indicate that a skeletal program which employs our back-end is around one order of magnitude faster than a skeletal parallel program using the traditional homogeneous FastFlow skeletons with the serial version of OpenCL code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信