用于DNA构象检测的声波生物传感器QCM-D的研究

A. Tsortos, G. Papadakis, E. Gizeli
{"title":"用于DNA构象检测的声波生物传感器QCM-D的研究","authors":"A. Tsortos, G. Papadakis, E. Gizeli","doi":"10.1109/FREQ.2008.4623017","DOIUrl":null,"url":null,"abstract":"This work describes the development of a real-time rapid technique for the quantitative characterization of DNA intrinsic curvature and conformational changes. We present a new approach where a label-free acoustic biosensor (QCM-D) is used for the detection of DNA conformation independently of bound DNA mass. DNA molecules bind to a neutravidin modified device surface by use of a biotin linker. Acoustic results, expressed as the ratio of dissipation over frequency change, DeltaD/Deltaf, provide insight on (intrinsic) viscosity changes [eta] occurring at the sensor/liquid interface as a result of DNA binding. Quantitative results regarding both the size and shape of DNAs were obtained, for the first time, by combining acoustic measurements with a mathematical treatment of solution viscosity theory. More specifically, we show that: DeltaD/Deltaf ~ [eta]. Acoustic measurements can clearly distinguish between ds-DNAs of same shape (rod) but various sizes (lengths of 20 up to 198 bp) and, of same mass and size (90 bp) but in various shapes (ldquostraightrdquo, ldquobentrdquo, ldquotrianglerdquo). Our results agree well with published qualitative observations and suggest that acoustic biosensors can be developed into a powerful tool for studying DNA conformational changes.","PeriodicalId":220442,"journal":{"name":"2008 IEEE International Frequency Control Symposium","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Acoustic wave biosensor for detecting DNA conformation; A study with QCM-D\",\"authors\":\"A. Tsortos, G. Papadakis, E. Gizeli\",\"doi\":\"10.1109/FREQ.2008.4623017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes the development of a real-time rapid technique for the quantitative characterization of DNA intrinsic curvature and conformational changes. We present a new approach where a label-free acoustic biosensor (QCM-D) is used for the detection of DNA conformation independently of bound DNA mass. DNA molecules bind to a neutravidin modified device surface by use of a biotin linker. Acoustic results, expressed as the ratio of dissipation over frequency change, DeltaD/Deltaf, provide insight on (intrinsic) viscosity changes [eta] occurring at the sensor/liquid interface as a result of DNA binding. Quantitative results regarding both the size and shape of DNAs were obtained, for the first time, by combining acoustic measurements with a mathematical treatment of solution viscosity theory. More specifically, we show that: DeltaD/Deltaf ~ [eta]. Acoustic measurements can clearly distinguish between ds-DNAs of same shape (rod) but various sizes (lengths of 20 up to 198 bp) and, of same mass and size (90 bp) but in various shapes (ldquostraightrdquo, ldquobentrdquo, ldquotrianglerdquo). Our results agree well with published qualitative observations and suggest that acoustic biosensors can be developed into a powerful tool for studying DNA conformational changes.\",\"PeriodicalId\":220442,\"journal\":{\"name\":\"2008 IEEE International Frequency Control Symposium\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Frequency Control Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2008.4623017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Frequency Control Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2008.4623017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

这项工作描述了一种实时快速技术的发展,用于DNA固有曲率和构象变化的定量表征。我们提出了一种新的方法,其中无标记声学生物传感器(QCM-D)用于检测DNA构象独立于结合的DNA质量。DNA分子通过生物素连接剂结合到中性生物素修饰的装置表面。声学结果,表示为耗散与频率变化之比,DeltaD/Deltaf,提供了由于DNA结合而在传感器/液体界面发生的(固有)粘度变化[eta]的见解。通过将声学测量与溶液粘度理论的数学处理相结合,首次获得了关于dna大小和形状的定量结果。更具体地说,我们表明:delta / delta ~ [eta]。声学测量可以清楚地区分形状相同(棒状)但大小不同(长度从20 bp到198 bp)的ds- dna,以及质量和大小相同(90 bp)但形状不同(ldquostraight - trdquo, ldquoobentrdquo, ldquotrianglerdquo)的ds- dna。我们的结果与已发表的定性观察结果一致,表明声学生物传感器可以发展成为研究DNA构象变化的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic wave biosensor for detecting DNA conformation; A study with QCM-D
This work describes the development of a real-time rapid technique for the quantitative characterization of DNA intrinsic curvature and conformational changes. We present a new approach where a label-free acoustic biosensor (QCM-D) is used for the detection of DNA conformation independently of bound DNA mass. DNA molecules bind to a neutravidin modified device surface by use of a biotin linker. Acoustic results, expressed as the ratio of dissipation over frequency change, DeltaD/Deltaf, provide insight on (intrinsic) viscosity changes [eta] occurring at the sensor/liquid interface as a result of DNA binding. Quantitative results regarding both the size and shape of DNAs were obtained, for the first time, by combining acoustic measurements with a mathematical treatment of solution viscosity theory. More specifically, we show that: DeltaD/Deltaf ~ [eta]. Acoustic measurements can clearly distinguish between ds-DNAs of same shape (rod) but various sizes (lengths of 20 up to 198 bp) and, of same mass and size (90 bp) but in various shapes (ldquostraightrdquo, ldquobentrdquo, ldquotrianglerdquo). Our results agree well with published qualitative observations and suggest that acoustic biosensors can be developed into a powerful tool for studying DNA conformational changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信