基于二次相关滤波和卡尔曼滤波的变速度多目标自动识别

Andres Rodriguez, Jeffrey Panza, B. Kumar, Abhijit Mahalanobis
{"title":"基于二次相关滤波和卡尔曼滤波的变速度多目标自动识别","authors":"Andres Rodriguez, Jeffrey Panza, B. Kumar, Abhijit Mahalanobis","doi":"10.1109/RADAR.2010.5494580","DOIUrl":null,"url":null,"abstract":"Automatic target recognition (ATR) systems require detection, recognition, and tracking algorithms. The classical approach is to treat these three stages separately. In this paper, we investigate a correlation filter (CF)-based approach that combines these tasks for enhanced ATR. We present a Kalman filter framework to combine information from successive correlation outputs in a probabilistic way. Our contribution is a framework that is able to locate multiple targets with different velocities at unknown positions providing enhanced ATR with only a marginal increase in computation over other CF ATR algorithms.","PeriodicalId":125591,"journal":{"name":"2010 IEEE Radar Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic recognition of multiple targets with varying velocities using quadratic correlation filters and Kalman filters\",\"authors\":\"Andres Rodriguez, Jeffrey Panza, B. Kumar, Abhijit Mahalanobis\",\"doi\":\"10.1109/RADAR.2010.5494580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic target recognition (ATR) systems require detection, recognition, and tracking algorithms. The classical approach is to treat these three stages separately. In this paper, we investigate a correlation filter (CF)-based approach that combines these tasks for enhanced ATR. We present a Kalman filter framework to combine information from successive correlation outputs in a probabilistic way. Our contribution is a framework that is able to locate multiple targets with different velocities at unknown positions providing enhanced ATR with only a marginal increase in computation over other CF ATR algorithms.\",\"PeriodicalId\":125591,\"journal\":{\"name\":\"2010 IEEE Radar Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2010.5494580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2010.5494580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自动目标识别(ATR)系统需要检测、识别和跟踪算法。经典的方法是分别对待这三个阶段。在本文中,我们研究了一种基于相关滤波器(CF)的方法,该方法结合了这些任务来增强ATR。我们提出了一种卡尔曼滤波框架,以一种概率的方式组合来自连续相关输出的信息。我们的贡献是一个框架,能够在未知位置定位不同速度的多个目标,提供增强的ATR,而与其他CF ATR算法相比,计算量只增加了一点点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic recognition of multiple targets with varying velocities using quadratic correlation filters and Kalman filters
Automatic target recognition (ATR) systems require detection, recognition, and tracking algorithms. The classical approach is to treat these three stages separately. In this paper, we investigate a correlation filter (CF)-based approach that combines these tasks for enhanced ATR. We present a Kalman filter framework to combine information from successive correlation outputs in a probabilistic way. Our contribution is a framework that is able to locate multiple targets with different velocities at unknown positions providing enhanced ATR with only a marginal increase in computation over other CF ATR algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信