MimeoDroid:通过机器学习分类器对克隆设备进行大规模动态应用分析

Parvez Faruki, A. Zemmari, M. Gaur, V. Laxmi, M. Conti
{"title":"MimeoDroid:通过机器学习分类器对克隆设备进行大规模动态应用分析","authors":"Parvez Faruki, A. Zemmari, M. Gaur, V. Laxmi, M. Conti","doi":"10.1109/DSN-W.2016.33","DOIUrl":null,"url":null,"abstract":"The exponential adoption of Android applications (apps) among the users has attracted malware authors to evade the default emulator based dynamic analysis systems. The evolving Android malware behaves benign once it identifies Goldfish emulator, often used for app development and malware analysis. Once a malware identifies the Goldfish virtual device, it behaves benign or prevents malicious code execution. The exponential increase of such stealth malware necessitates a detection approach which coerces the malicious apps to reveal the hidden behavior. To detect malicious apps and characterize their association we propose MimeoDroid (enriched replica of real Android device), a modified virtual clone to coerce the malware to believe being executed on an actual device. We automate relevant feature extraction and classification of Processor, memory usage, Binder IPC transfers, network interaction, battery charging status and manifest permission(s) to detect malicious behavior using Tree based machine learning classifiers. MimeoDroid is a lightweight machine learning based malware analysis and characterization to detect malicious apps that would evade the existing analyzers.","PeriodicalId":184154,"journal":{"name":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W)","volume":"58 S276","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MimeoDroid: Large Scale Dynamic App Analysis on Cloned Devices via Machine Learning Classifiers\",\"authors\":\"Parvez Faruki, A. Zemmari, M. Gaur, V. Laxmi, M. Conti\",\"doi\":\"10.1109/DSN-W.2016.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential adoption of Android applications (apps) among the users has attracted malware authors to evade the default emulator based dynamic analysis systems. The evolving Android malware behaves benign once it identifies Goldfish emulator, often used for app development and malware analysis. Once a malware identifies the Goldfish virtual device, it behaves benign or prevents malicious code execution. The exponential increase of such stealth malware necessitates a detection approach which coerces the malicious apps to reveal the hidden behavior. To detect malicious apps and characterize their association we propose MimeoDroid (enriched replica of real Android device), a modified virtual clone to coerce the malware to believe being executed on an actual device. We automate relevant feature extraction and classification of Processor, memory usage, Binder IPC transfers, network interaction, battery charging status and manifest permission(s) to detect malicious behavior using Tree based machine learning classifiers. MimeoDroid is a lightweight machine learning based malware analysis and characterization to detect malicious apps that would evade the existing analyzers.\",\"PeriodicalId\":184154,\"journal\":{\"name\":\"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W)\",\"volume\":\"58 S276\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN-W.2016.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN-W.2016.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Android应用程序在用户中的指数级采用吸引了恶意软件作者来逃避基于默认模拟器的动态分析系统。一旦识别出金鱼模拟器(通常用于应用开发和恶意软件分析),不断发展的Android恶意软件就会表现出善意。一旦恶意软件识别了金鱼虚拟设备,它就会表现为良性或阻止恶意代码的执行。这种隐形恶意软件的指数增长需要一种检测方法,迫使恶意应用程序揭示隐藏的行为。为了检测恶意应用程序并描述它们之间的关联,我们提出了MimeoDroid(真实Android设备的丰富副本),这是一种经过修改的虚拟克隆,可以强制恶意软件相信在实际设备上执行。我们使用基于树的机器学习分类器自动提取相关特征并对处理器、内存使用、Binder IPC传输、网络交互、电池充电状态和清单权限进行分类,以检测恶意行为。MimeoDroid是一个轻量级的基于机器学习的恶意软件分析和表征,以检测恶意应用程序,将逃避现有的分析器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MimeoDroid: Large Scale Dynamic App Analysis on Cloned Devices via Machine Learning Classifiers
The exponential adoption of Android applications (apps) among the users has attracted malware authors to evade the default emulator based dynamic analysis systems. The evolving Android malware behaves benign once it identifies Goldfish emulator, often used for app development and malware analysis. Once a malware identifies the Goldfish virtual device, it behaves benign or prevents malicious code execution. The exponential increase of such stealth malware necessitates a detection approach which coerces the malicious apps to reveal the hidden behavior. To detect malicious apps and characterize their association we propose MimeoDroid (enriched replica of real Android device), a modified virtual clone to coerce the malware to believe being executed on an actual device. We automate relevant feature extraction and classification of Processor, memory usage, Binder IPC transfers, network interaction, battery charging status and manifest permission(s) to detect malicious behavior using Tree based machine learning classifiers. MimeoDroid is a lightweight machine learning based malware analysis and characterization to detect malicious apps that would evade the existing analyzers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信