{"title":"协作型工业机器人的最优冗余分辨率","authors":"B. Cao, G. Dodds, G. Irwin","doi":"10.1109/IROS.1997.648978","DOIUrl":null,"url":null,"abstract":"Planning for effective manipulation of single, redundant or multiple robot systems requires the consideration of the DOF, dexterity, tasks and constraints. A new approach to redundancy resolution for multiple cooperative robots is proposed. A relative Jacobian, thus relative dexterity, is clearly defined and derived for multiple robots. Sequential quadratic programming (SQP) is used to optimize the relative dexterity of the robots whilst satisfying task requirements and limits on joint angles. With this approach it is not necessary to balance the weightings between the performance index and those constraint terms in the cost function. Further the resulting joint configurations are globally optimal with respect to the specified cost. An illustrative example is included to demonstrate the usefulness of this approach. From this example, the relative dexterity of the arms has been found to be more useful than individual arm dexterities in planning the cooperative task.","PeriodicalId":408848,"journal":{"name":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal redundancy resolution for cooperative industrial robots\",\"authors\":\"B. Cao, G. Dodds, G. Irwin\",\"doi\":\"10.1109/IROS.1997.648978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planning for effective manipulation of single, redundant or multiple robot systems requires the consideration of the DOF, dexterity, tasks and constraints. A new approach to redundancy resolution for multiple cooperative robots is proposed. A relative Jacobian, thus relative dexterity, is clearly defined and derived for multiple robots. Sequential quadratic programming (SQP) is used to optimize the relative dexterity of the robots whilst satisfying task requirements and limits on joint angles. With this approach it is not necessary to balance the weightings between the performance index and those constraint terms in the cost function. Further the resulting joint configurations are globally optimal with respect to the specified cost. An illustrative example is included to demonstrate the usefulness of this approach. From this example, the relative dexterity of the arms has been found to be more useful than individual arm dexterities in planning the cooperative task.\",\"PeriodicalId\":408848,\"journal\":{\"name\":\"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1997.648978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1997.648978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal redundancy resolution for cooperative industrial robots
Planning for effective manipulation of single, redundant or multiple robot systems requires the consideration of the DOF, dexterity, tasks and constraints. A new approach to redundancy resolution for multiple cooperative robots is proposed. A relative Jacobian, thus relative dexterity, is clearly defined and derived for multiple robots. Sequential quadratic programming (SQP) is used to optimize the relative dexterity of the robots whilst satisfying task requirements and limits on joint angles. With this approach it is not necessary to balance the weightings between the performance index and those constraint terms in the cost function. Further the resulting joint configurations are globally optimal with respect to the specified cost. An illustrative example is included to demonstrate the usefulness of this approach. From this example, the relative dexterity of the arms has been found to be more useful than individual arm dexterities in planning the cooperative task.