全局最优分布融合白噪声反卷积估计

Xiaojun Sun, G. Yan, Bo Zhang
{"title":"全局最优分布融合白噪声反卷积估计","authors":"Xiaojun Sun, G. Yan, Bo Zhang","doi":"10.1109/MIC.2013.6757935","DOIUrl":null,"url":null,"abstract":"In this paper, a distributed fusion white noise deconvolution estimator is presented for the multisensor linear discrete systems with different measurement matrices and correlated measurement noises. It is globally optimal because it is derived from the centralized fusion white noise deconvolution estimator and is identical to the centralized fuser. The proposed white noise fuser is obtained based on the local Kalman predictors. Compared with the existing globally suboptimal distributed fusion white noise estimators, the computation of complex covariance matrices is avoided. The effectiveness of the proposed results is shown by a Monte Carlo simulation for the Bernoulli-Gaussian input white noise.","PeriodicalId":404630,"journal":{"name":"Proceedings of 2013 2nd International Conference on Measurement, Information and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Globally optimal distributed fusion white noise deconvolution estimator\",\"authors\":\"Xiaojun Sun, G. Yan, Bo Zhang\",\"doi\":\"10.1109/MIC.2013.6757935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a distributed fusion white noise deconvolution estimator is presented for the multisensor linear discrete systems with different measurement matrices and correlated measurement noises. It is globally optimal because it is derived from the centralized fusion white noise deconvolution estimator and is identical to the centralized fuser. The proposed white noise fuser is obtained based on the local Kalman predictors. Compared with the existing globally suboptimal distributed fusion white noise estimators, the computation of complex covariance matrices is avoided. The effectiveness of the proposed results is shown by a Monte Carlo simulation for the Bernoulli-Gaussian input white noise.\",\"PeriodicalId\":404630,\"journal\":{\"name\":\"Proceedings of 2013 2nd International Conference on Measurement, Information and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2013 2nd International Conference on Measurement, Information and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIC.2013.6757935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 2nd International Conference on Measurement, Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIC.2013.6757935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对具有不同测量矩阵和相关测量噪声的多传感器线性离散系统,提出了一种分布式融合白噪声反卷积估计器。它是全局最优的,因为它是由集中式融合白噪声反卷积估计器衍生而来,并且与集中式融合器相同。提出了基于局部卡尔曼预测的白噪声融合器。与现有的全局次优分布融合白噪声估计器相比,避免了复杂协方差矩阵的计算。通过对伯努利-高斯输入白噪声的蒙特卡罗仿真,验证了所提结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Globally optimal distributed fusion white noise deconvolution estimator
In this paper, a distributed fusion white noise deconvolution estimator is presented for the multisensor linear discrete systems with different measurement matrices and correlated measurement noises. It is globally optimal because it is derived from the centralized fusion white noise deconvolution estimator and is identical to the centralized fuser. The proposed white noise fuser is obtained based on the local Kalman predictors. Compared with the existing globally suboptimal distributed fusion white noise estimators, the computation of complex covariance matrices is avoided. The effectiveness of the proposed results is shown by a Monte Carlo simulation for the Bernoulli-Gaussian input white noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信