{"title":"纤锌矿AlN中点缺陷的集中:一种杂化功能研究","authors":"L. Silvestri, K. Dunn, S. Prawer, F. Ladouceur","doi":"10.1209/0295-5075/98/36003","DOIUrl":null,"url":null,"abstract":"Formation energies and concentrations of the most relevant point defects in n-type wurtzite AlN are obtained by first-principle calculations employing a hybrid functional. We show that the incorporation of Si is favoured over O under N-rich growth conditions, but not under Al-rich conditions. The triply negatively charged Al vacancy is found to be the defect with the lowest formation energy in n-type AlN and it is therefore expected to be the main compensating acceptor. Under typical physical vapor-phase transport growth conditions, we predict Si concentrations of up to 1020 cm− 3 and net donor concentrations of about 1018 cm− 3, in good agreement with available experimental data.","PeriodicalId":171520,"journal":{"name":"EPL (Europhysics Letters)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Concentration of point defects in wurtzite AlN: A hybrid functional study\",\"authors\":\"L. Silvestri, K. Dunn, S. Prawer, F. Ladouceur\",\"doi\":\"10.1209/0295-5075/98/36003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formation energies and concentrations of the most relevant point defects in n-type wurtzite AlN are obtained by first-principle calculations employing a hybrid functional. We show that the incorporation of Si is favoured over O under N-rich growth conditions, but not under Al-rich conditions. The triply negatively charged Al vacancy is found to be the defect with the lowest formation energy in n-type AlN and it is therefore expected to be the main compensating acceptor. Under typical physical vapor-phase transport growth conditions, we predict Si concentrations of up to 1020 cm− 3 and net donor concentrations of about 1018 cm− 3, in good agreement with available experimental data.\",\"PeriodicalId\":171520,\"journal\":{\"name\":\"EPL (Europhysics Letters)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL (Europhysics Letters)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/98/36003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL (Europhysics Letters)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/98/36003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concentration of point defects in wurtzite AlN: A hybrid functional study
Formation energies and concentrations of the most relevant point defects in n-type wurtzite AlN are obtained by first-principle calculations employing a hybrid functional. We show that the incorporation of Si is favoured over O under N-rich growth conditions, but not under Al-rich conditions. The triply negatively charged Al vacancy is found to be the defect with the lowest formation energy in n-type AlN and it is therefore expected to be the main compensating acceptor. Under typical physical vapor-phase transport growth conditions, we predict Si concentrations of up to 1020 cm− 3 and net donor concentrations of about 1018 cm− 3, in good agreement with available experimental data.