基于深度学习的医疗物联网网络入侵检测系统

Vinayakumar Ravi, T. Pham, M. Alazab
{"title":"基于深度学习的医疗物联网网络入侵检测系统","authors":"Vinayakumar Ravi, T. Pham, M. Alazab","doi":"10.1109/IOTM.001.2300021","DOIUrl":null,"url":null,"abstract":"This article presents a deep learning-based approach for network-based intrusion detection in the Internet of medical things (IoMT) systems using features of network flows and patient biometrics. The proposed approach effectively learns optimal feature representation by passing the information of network flows and patient biometrics into more than one hidden layer of deep learning. The network includes a global attention layer which helps to effectively extract the optimal features from the spatial and temporal features of deep learning. To avoid data imbalance, a cost-sensitive learning approach is integrated into the deep learning model. The proposed model showed a 10-fold cross-validation accuracy of 95 percent on network features, 89 percent on patient biometrics, and 99 percent on combined features. In addition to the IoMT environment, the robustness and generalization ability of the proposed model is shown by conducting experiments on other network-based intrusion datasets. The proposed approach outperformed the existing methods in all the test cases mainly showing a 3.9 percent higher accuracy on the IoMT intrusion dataset. The proposed model can be used as an IoMT network monitoring tool to safeguard the IoMT devices and networks from attackers inside the healthcare and medical environment.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Learning-Based Network Intrusion Detection System for Internet of Medical Things\",\"authors\":\"Vinayakumar Ravi, T. Pham, M. Alazab\",\"doi\":\"10.1109/IOTM.001.2300021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a deep learning-based approach for network-based intrusion detection in the Internet of medical things (IoMT) systems using features of network flows and patient biometrics. The proposed approach effectively learns optimal feature representation by passing the information of network flows and patient biometrics into more than one hidden layer of deep learning. The network includes a global attention layer which helps to effectively extract the optimal features from the spatial and temporal features of deep learning. To avoid data imbalance, a cost-sensitive learning approach is integrated into the deep learning model. The proposed model showed a 10-fold cross-validation accuracy of 95 percent on network features, 89 percent on patient biometrics, and 99 percent on combined features. In addition to the IoMT environment, the robustness and generalization ability of the proposed model is shown by conducting experiments on other network-based intrusion datasets. The proposed approach outperformed the existing methods in all the test cases mainly showing a 3.9 percent higher accuracy on the IoMT intrusion dataset. The proposed model can be used as an IoMT network monitoring tool to safeguard the IoMT devices and networks from attackers inside the healthcare and medical environment.\",\"PeriodicalId\":235472,\"journal\":{\"name\":\"IEEE Internet of Things Magazine\",\"volume\":\"319 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOTM.001.2300021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2300021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于深度学习的方法,用于医疗物联网(IoMT)系统中基于网络的入侵检测,该方法使用网络流和患者生物识别特征。该方法通过将网络流和患者生物特征信息传递到多个深度学习隐藏层,有效地学习最优特征表示。该网络包含一个全局关注层,有助于有效地从深度学习的时空特征中提取最优特征。为了避免数据不平衡,在深度学习模型中集成了成本敏感学习方法。所提出的模型显示了10倍的交叉验证准确率,在网络特征上为95%,在患者生物特征上为89%,在组合特征上为99%。除了IoMT环境外,在其他基于网络的入侵数据集上进行了实验,证明了该模型的鲁棒性和泛化能力。所提出的方法在所有测试用例中都优于现有方法,主要在IoMT入侵数据集上显示出3.9%的更高准确性。该模型可以用作IoMT网络监控工具,以保护IoMT设备和网络免受医疗保健和医疗环境中的攻击者的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Network Intrusion Detection System for Internet of Medical Things
This article presents a deep learning-based approach for network-based intrusion detection in the Internet of medical things (IoMT) systems using features of network flows and patient biometrics. The proposed approach effectively learns optimal feature representation by passing the information of network flows and patient biometrics into more than one hidden layer of deep learning. The network includes a global attention layer which helps to effectively extract the optimal features from the spatial and temporal features of deep learning. To avoid data imbalance, a cost-sensitive learning approach is integrated into the deep learning model. The proposed model showed a 10-fold cross-validation accuracy of 95 percent on network features, 89 percent on patient biometrics, and 99 percent on combined features. In addition to the IoMT environment, the robustness and generalization ability of the proposed model is shown by conducting experiments on other network-based intrusion datasets. The proposed approach outperformed the existing methods in all the test cases mainly showing a 3.9 percent higher accuracy on the IoMT intrusion dataset. The proposed model can be used as an IoMT network monitoring tool to safeguard the IoMT devices and networks from attackers inside the healthcare and medical environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信