BP神经网络与逻辑回归的结合及其应用

Lei Wei, Yao He
{"title":"BP神经网络与逻辑回归的结合及其应用","authors":"Lei Wei, Yao He","doi":"10.1109/ECICE52819.2021.9645605","DOIUrl":null,"url":null,"abstract":"Both BP neural network and logistic regression are widely applied in the field of nonlinear relationship analysis. This paper combines the logistic regression model and BP neural network for small sample prediction to establish a new nonlinear fitting model and apply it to practice. The new model effectively extracts the main control variables under multi-factor interference. The accuracy of the prediction model is further improved, which is highly consistent with the significance test of logistic regression.","PeriodicalId":176225,"journal":{"name":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combination of BP Neural Network and Logistic Regression its Application\",\"authors\":\"Lei Wei, Yao He\",\"doi\":\"10.1109/ECICE52819.2021.9645605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both BP neural network and logistic regression are widely applied in the field of nonlinear relationship analysis. This paper combines the logistic regression model and BP neural network for small sample prediction to establish a new nonlinear fitting model and apply it to practice. The new model effectively extracts the main control variables under multi-factor interference. The accuracy of the prediction model is further improved, which is highly consistent with the significance test of logistic regression.\",\"PeriodicalId\":176225,\"journal\":{\"name\":\"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECICE52819.2021.9645605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE52819.2021.9645605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

BP神经网络和逻辑回归在非线性关系分析领域有着广泛的应用。将logistic回归模型与BP神经网络相结合,建立了一种新的小样本预测非线性拟合模型,并将其应用于实际。该模型能有效地提取多因素干扰下的主要控制变量。预测模型的准确性进一步提高,与logistic回归显著性检验高度一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combination of BP Neural Network and Logistic Regression its Application
Both BP neural network and logistic regression are widely applied in the field of nonlinear relationship analysis. This paper combines the logistic regression model and BP neural network for small sample prediction to establish a new nonlinear fitting model and apply it to practice. The new model effectively extracts the main control variables under multi-factor interference. The accuracy of the prediction model is further improved, which is highly consistent with the significance test of logistic regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信