{"title":"SSD管理的离线和在线算法","authors":"Tomer Lange, J. Naor, G. Yadgar","doi":"10.1145/3489048.3522630","DOIUrl":null,"url":null,"abstract":"The abundance of system-level optimizations for reducing SSD write amplification, which are usually based on experimental evaluation, stands in contrast to the lack of theoretical algorithmic results in this problem domain. To bridge this gap, we explore the problem of reducing write amplification from an algorithmic perspective, considering it in both offline and online settings. In the offline setting, we present a near-optimal algorithm. In the online setting, we first consider algorithms that have no prior knowledge about the input. We present a worst case lower bound and show that the greedy algorithm is optimal in this setting. Then we design an online algorithm that uses predictions about the input. We show that when predictions are pretty accurate, our algorithm circumvents the above lower bound. We complement our theoretical findings with an empirical evaluation of our algorithms, comparing them with the state-of-the-art scheme. The results confirm that our algorithms exhibit an improved performance for a wide range of input traces.","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Offline and Online Algorithms for SSD Management\",\"authors\":\"Tomer Lange, J. Naor, G. Yadgar\",\"doi\":\"10.1145/3489048.3522630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abundance of system-level optimizations for reducing SSD write amplification, which are usually based on experimental evaluation, stands in contrast to the lack of theoretical algorithmic results in this problem domain. To bridge this gap, we explore the problem of reducing write amplification from an algorithmic perspective, considering it in both offline and online settings. In the offline setting, we present a near-optimal algorithm. In the online setting, we first consider algorithms that have no prior knowledge about the input. We present a worst case lower bound and show that the greedy algorithm is optimal in this setting. Then we design an online algorithm that uses predictions about the input. We show that when predictions are pretty accurate, our algorithm circumvents the above lower bound. We complement our theoretical findings with an empirical evaluation of our algorithms, comparing them with the state-of-the-art scheme. The results confirm that our algorithms exhibit an improved performance for a wide range of input traces.\",\"PeriodicalId\":264598,\"journal\":{\"name\":\"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489048.3522630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3522630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The abundance of system-level optimizations for reducing SSD write amplification, which are usually based on experimental evaluation, stands in contrast to the lack of theoretical algorithmic results in this problem domain. To bridge this gap, we explore the problem of reducing write amplification from an algorithmic perspective, considering it in both offline and online settings. In the offline setting, we present a near-optimal algorithm. In the online setting, we first consider algorithms that have no prior knowledge about the input. We present a worst case lower bound and show that the greedy algorithm is optimal in this setting. Then we design an online algorithm that uses predictions about the input. We show that when predictions are pretty accurate, our algorithm circumvents the above lower bound. We complement our theoretical findings with an empirical evaluation of our algorithms, comparing them with the state-of-the-art scheme. The results confirm that our algorithms exhibit an improved performance for a wide range of input traces.