图的不规则分解的一些结果

C. N. Lintzmayer, G. Mota, Lucas S. da Rocha, M. Sambinelli
{"title":"图的不规则分解的一些结果","authors":"C. N. Lintzmayer, G. Mota, Lucas S. da Rocha, M. Sambinelli","doi":"10.5753/etc.2023.230304","DOIUrl":null,"url":null,"abstract":"A graph is locally irregular if any pair of adjacent vertices have distinct degrees. A locally irregular decomposition of a graph G is a decomposition of G into subgraphs that are locally irregular. We prove that any graph G can be decomposed into at most 2∆(G) − 1 locally irregular graphs, improving on the previous upper bound of 3∆(G)−2. We also show some results on subcubic and non-decomposable graphs.","PeriodicalId":165974,"journal":{"name":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on irregular decomposition of graphs\",\"authors\":\"C. N. Lintzmayer, G. Mota, Lucas S. da Rocha, M. Sambinelli\",\"doi\":\"10.5753/etc.2023.230304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graph is locally irregular if any pair of adjacent vertices have distinct degrees. A locally irregular decomposition of a graph G is a decomposition of G into subgraphs that are locally irregular. We prove that any graph G can be decomposed into at most 2∆(G) − 1 locally irregular graphs, improving on the previous upper bound of 3∆(G)−2. We also show some results on subcubic and non-decomposable graphs.\",\"PeriodicalId\":165974,\"journal\":{\"name\":\"Anais do VIII Encontro de Teoria da Computação (ETC 2023)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do VIII Encontro de Teoria da Computação (ETC 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/etc.2023.230304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2023.230304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果任意一对相邻顶点具有不同的度数,则图是局部不规则的。图G的局部不规则分解是将G分解成局部不规则的子图。我们证明了任意图G最多可以分解为2个∆(G)−1个局部不规则图,改进了之前3个∆(G)−2的上界。我们也给出了关于次三次图和不可分解图的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on irregular decomposition of graphs
A graph is locally irregular if any pair of adjacent vertices have distinct degrees. A locally irregular decomposition of a graph G is a decomposition of G into subgraphs that are locally irregular. We prove that any graph G can be decomposed into at most 2∆(G) − 1 locally irregular graphs, improving on the previous upper bound of 3∆(G)−2. We also show some results on subcubic and non-decomposable graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信