C. N. Lintzmayer, G. Mota, Lucas S. da Rocha, M. Sambinelli
{"title":"图的不规则分解的一些结果","authors":"C. N. Lintzmayer, G. Mota, Lucas S. da Rocha, M. Sambinelli","doi":"10.5753/etc.2023.230304","DOIUrl":null,"url":null,"abstract":"A graph is locally irregular if any pair of adjacent vertices have distinct degrees. A locally irregular decomposition of a graph G is a decomposition of G into subgraphs that are locally irregular. We prove that any graph G can be decomposed into at most 2∆(G) − 1 locally irregular graphs, improving on the previous upper bound of 3∆(G)−2. We also show some results on subcubic and non-decomposable graphs.","PeriodicalId":165974,"journal":{"name":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on irregular decomposition of graphs\",\"authors\":\"C. N. Lintzmayer, G. Mota, Lucas S. da Rocha, M. Sambinelli\",\"doi\":\"10.5753/etc.2023.230304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graph is locally irregular if any pair of adjacent vertices have distinct degrees. A locally irregular decomposition of a graph G is a decomposition of G into subgraphs that are locally irregular. We prove that any graph G can be decomposed into at most 2∆(G) − 1 locally irregular graphs, improving on the previous upper bound of 3∆(G)−2. We also show some results on subcubic and non-decomposable graphs.\",\"PeriodicalId\":165974,\"journal\":{\"name\":\"Anais do VIII Encontro de Teoria da Computação (ETC 2023)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do VIII Encontro de Teoria da Computação (ETC 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/etc.2023.230304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2023.230304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A graph is locally irregular if any pair of adjacent vertices have distinct degrees. A locally irregular decomposition of a graph G is a decomposition of G into subgraphs that are locally irregular. We prove that any graph G can be decomposed into at most 2∆(G) − 1 locally irregular graphs, improving on the previous upper bound of 3∆(G)−2. We also show some results on subcubic and non-decomposable graphs.