活动轮廓的梯度矢量流联合显著性分析

Ruzheng Zhao, Zhiheng Zhou, Ming Dai, Jie Tang
{"title":"活动轮廓的梯度矢量流联合显著性分析","authors":"Ruzheng Zhao, Zhiheng Zhou, Ming Dai, Jie Tang","doi":"10.1504/IJAMC.2017.10006887","DOIUrl":null,"url":null,"abstract":"Image segmentation is one of the key technologies in digital image processing. Gradient vector flow (GVF) active contours model is one of important methods for image segmentation. But GVF method could not deal with complex natural images efficiently. In this paper, a new active contours algorithm is proposed. The proposed algorithm uses the advantage of saliency model in distinguishing objects and background to increasing the ability of GVF method to segment complex images. Experiment results on natural images show the better performances of proposed method compared with the tradition GVF method.","PeriodicalId":134413,"journal":{"name":"Int. J. Adv. Media Commun.","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient vector flow combined saliency analysis for active contours\",\"authors\":\"Ruzheng Zhao, Zhiheng Zhou, Ming Dai, Jie Tang\",\"doi\":\"10.1504/IJAMC.2017.10006887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is one of the key technologies in digital image processing. Gradient vector flow (GVF) active contours model is one of important methods for image segmentation. But GVF method could not deal with complex natural images efficiently. In this paper, a new active contours algorithm is proposed. The proposed algorithm uses the advantage of saliency model in distinguishing objects and background to increasing the ability of GVF method to segment complex images. Experiment results on natural images show the better performances of proposed method compared with the tradition GVF method.\",\"PeriodicalId\":134413,\"journal\":{\"name\":\"Int. J. Adv. Media Commun.\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Adv. Media Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAMC.2017.10006887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Adv. Media Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAMC.2017.10006887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像分割是数字图像处理中的关键技术之一。梯度矢量流(GVF)活动轮廓模型是图像分割的重要方法之一。但GVF方法不能有效地处理复杂的自然图像。本文提出了一种新的活动轮廓算法。该算法利用显著性模型在区分目标和背景方面的优势,提高了梯度矢量流场方法分割复杂图像的能力。在自然图像上的实验结果表明,与传统的梯度矢量流场方法相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient vector flow combined saliency analysis for active contours
Image segmentation is one of the key technologies in digital image processing. Gradient vector flow (GVF) active contours model is one of important methods for image segmentation. But GVF method could not deal with complex natural images efficiently. In this paper, a new active contours algorithm is proposed. The proposed algorithm uses the advantage of saliency model in distinguishing objects and background to increasing the ability of GVF method to segment complex images. Experiment results on natural images show the better performances of proposed method compared with the tradition GVF method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信