有限域的点阵模型

L. Ionescu, M. Zarrin
{"title":"有限域的点阵模型","authors":"L. Ionescu, M. Zarrin","doi":"10.4236/APM.2017.79030","DOIUrl":null,"url":null,"abstract":"Finite fields form an important chapter in abstract algebra, and mathematics in general. We aim to provide a geometric and intuitive model for finite fields, involving algebraic numbers, in order to make them accessible and interesting to a much larger audience. \nSuch lattice models of finite fields provide a good basis for later developing the theory in a more concrete way, including Frobenius elements, all the way to Artin reciprocity law. \nExamples are provided, intended for an undergraduate audience in the first place.","PeriodicalId":429168,"journal":{"name":"arXiv: History and Overview","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lattice Models of Finite Fields\",\"authors\":\"L. Ionescu, M. Zarrin\",\"doi\":\"10.4236/APM.2017.79030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite fields form an important chapter in abstract algebra, and mathematics in general. We aim to provide a geometric and intuitive model for finite fields, involving algebraic numbers, in order to make them accessible and interesting to a much larger audience. \\nSuch lattice models of finite fields provide a good basis for later developing the theory in a more concrete way, including Frobenius elements, all the way to Artin reciprocity law. \\nExamples are provided, intended for an undergraduate audience in the first place.\",\"PeriodicalId\":429168,\"journal\":{\"name\":\"arXiv: History and Overview\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: History and Overview\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/APM.2017.79030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/APM.2017.79030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有限域在抽象代数和一般数学中是一个重要的章节。我们的目标是为有限域提供一个几何和直观的模型,包括代数数,以使它们对更多的观众来说是可访问的和有趣的。这种有限域的晶格模型为后来更具体地发展理论提供了很好的基础,包括Frobenius元,一直到Artin互易律。提供了一些例子,首先是为本科生提供的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lattice Models of Finite Fields
Finite fields form an important chapter in abstract algebra, and mathematics in general. We aim to provide a geometric and intuitive model for finite fields, involving algebraic numbers, in order to make them accessible and interesting to a much larger audience. Such lattice models of finite fields provide a good basis for later developing the theory in a more concrete way, including Frobenius elements, all the way to Artin reciprocity law. Examples are provided, intended for an undergraduate audience in the first place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信