基于深度学习技术的肝脏肿瘤分割

Mr. A. Vishnu Vardhan, Kondamudi Swetha, KaipaRajeswara Reddy, Kesana Sainadh, Mahanth Nannapaneni
{"title":"基于深度学习技术的肝脏肿瘤分割","authors":"Mr. A. Vishnu Vardhan, Kondamudi Swetha, KaipaRajeswara Reddy, Kesana Sainadh, Mahanth Nannapaneni","doi":"10.48047/ijfans/v11/i12/170","DOIUrl":null,"url":null,"abstract":"Liver tumor segmentation plays a critical role in medical imaging analysis, especially in cancer diagnosis and treatment planning. Accurate segmentation of liver tumors is essential. There has been growing interest in developing automated methods for liver tumor segmentation, practically using deep learning algorithms. In this paper, we use the convolutional neural networks (CNNs), on large datasets of liver images, labelled with the tumor regions. A U-net architecture is builtwith cross connections. The encoder and decoder portion of the Unet is built using a 34 layerResNet. The model was trained on Liver Tumor Segmentation challenge (LITS) dataset of liver CT scans and evaluated on a separate test dataset. The results demonstrated that the proposed method produced great segmentation accuracy and an average dice score of 0.95","PeriodicalId":290296,"journal":{"name":"International Journal of Food and Nutritional Sciences","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liver Tumor Segmentation using Deep Learning Techniques\",\"authors\":\"Mr. A. Vishnu Vardhan, Kondamudi Swetha, KaipaRajeswara Reddy, Kesana Sainadh, Mahanth Nannapaneni\",\"doi\":\"10.48047/ijfans/v11/i12/170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liver tumor segmentation plays a critical role in medical imaging analysis, especially in cancer diagnosis and treatment planning. Accurate segmentation of liver tumors is essential. There has been growing interest in developing automated methods for liver tumor segmentation, practically using deep learning algorithms. In this paper, we use the convolutional neural networks (CNNs), on large datasets of liver images, labelled with the tumor regions. A U-net architecture is builtwith cross connections. The encoder and decoder portion of the Unet is built using a 34 layerResNet. The model was trained on Liver Tumor Segmentation challenge (LITS) dataset of liver CT scans and evaluated on a separate test dataset. The results demonstrated that the proposed method produced great segmentation accuracy and an average dice score of 0.95\",\"PeriodicalId\":290296,\"journal\":{\"name\":\"International Journal of Food and Nutritional Sciences\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Food and Nutritional Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48047/ijfans/v11/i12/170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food and Nutritional Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48047/ijfans/v11/i12/170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肝脏肿瘤分割在医学影像分析中,特别是在肿瘤诊断和治疗计划中起着至关重要的作用。肝脏肿瘤的准确分割至关重要。人们对开发肝脏肿瘤分割的自动化方法越来越感兴趣,实际上是使用深度学习算法。在本文中,我们在肝脏图像的大型数据集上使用卷积神经网络(cnn),标记肿瘤区域。U-net架构是通过交叉连接构建的。Unet的编码器和解码器部分是使用34层的resnet构建的。该模型在肝脏CT扫描的肝脏肿瘤分割挑战(LITS)数据集上进行训练,并在单独的测试数据集上进行评估。结果表明,该方法具有较高的分割精度,平均分割分数为0.95
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liver Tumor Segmentation using Deep Learning Techniques
Liver tumor segmentation plays a critical role in medical imaging analysis, especially in cancer diagnosis and treatment planning. Accurate segmentation of liver tumors is essential. There has been growing interest in developing automated methods for liver tumor segmentation, practically using deep learning algorithms. In this paper, we use the convolutional neural networks (CNNs), on large datasets of liver images, labelled with the tumor regions. A U-net architecture is builtwith cross connections. The encoder and decoder portion of the Unet is built using a 34 layerResNet. The model was trained on Liver Tumor Segmentation challenge (LITS) dataset of liver CT scans and evaluated on a separate test dataset. The results demonstrated that the proposed method produced great segmentation accuracy and an average dice score of 0.95
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信