{"title":"固定翼无人机着陆阶段自主跑道对准","authors":"Soha Pouya, F. Saghafi","doi":"10.1109/ICAS.2009.8","DOIUrl":null,"url":null,"abstract":"In this paper, the development of a controller for autonomous lateral alignment of fixed-wing Unmanned Aerial Vehicles (UAVs) with runway centerline in landing phase is presented. Fuzzy Logic Control (FLC) is used in order to enable the vehicle to mimic the decision making procedure that a pilot follow in the same situation. Also, for longitudinal motion controller design for the UAV to follow a pre-defined trajectory, the pole-placement technique is used. It is assumed that the runway relative position and orientation are provided by a built in vision system and its associated image processing unit. The performance of the controller in the presence of the Gaussian noises is investigated by the 6DOF computer simulation for a known fixed-wing UAV. It is shown that the developed controller has an acceptable performance and can be considered as a generic option for the controller structure in autonomous vision-based landing phase of fixed-wing UAVs.","PeriodicalId":258907,"journal":{"name":"2009 Fifth International Conference on Autonomic and Autonomous Systems","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Autonomous Runway Alignment of Fixed-Wing Unmanned Aerial Vehicles in Landing Phase\",\"authors\":\"Soha Pouya, F. Saghafi\",\"doi\":\"10.1109/ICAS.2009.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the development of a controller for autonomous lateral alignment of fixed-wing Unmanned Aerial Vehicles (UAVs) with runway centerline in landing phase is presented. Fuzzy Logic Control (FLC) is used in order to enable the vehicle to mimic the decision making procedure that a pilot follow in the same situation. Also, for longitudinal motion controller design for the UAV to follow a pre-defined trajectory, the pole-placement technique is used. It is assumed that the runway relative position and orientation are provided by a built in vision system and its associated image processing unit. The performance of the controller in the presence of the Gaussian noises is investigated by the 6DOF computer simulation for a known fixed-wing UAV. It is shown that the developed controller has an acceptable performance and can be considered as a generic option for the controller structure in autonomous vision-based landing phase of fixed-wing UAVs.\",\"PeriodicalId\":258907,\"journal\":{\"name\":\"2009 Fifth International Conference on Autonomic and Autonomous Systems\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fifth International Conference on Autonomic and Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAS.2009.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Autonomic and Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS.2009.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autonomous Runway Alignment of Fixed-Wing Unmanned Aerial Vehicles in Landing Phase
In this paper, the development of a controller for autonomous lateral alignment of fixed-wing Unmanned Aerial Vehicles (UAVs) with runway centerline in landing phase is presented. Fuzzy Logic Control (FLC) is used in order to enable the vehicle to mimic the decision making procedure that a pilot follow in the same situation. Also, for longitudinal motion controller design for the UAV to follow a pre-defined trajectory, the pole-placement technique is used. It is assumed that the runway relative position and orientation are provided by a built in vision system and its associated image processing unit. The performance of the controller in the presence of the Gaussian noises is investigated by the 6DOF computer simulation for a known fixed-wing UAV. It is shown that the developed controller has an acceptable performance and can be considered as a generic option for the controller structure in autonomous vision-based landing phase of fixed-wing UAVs.