用割型方法在Banach空间中扩展方程的可解性

I. Argyros, S. George
{"title":"用割型方法在Banach空间中扩展方程的可解性","authors":"I. Argyros, S. George","doi":"10.33993/jnaat502-1134","DOIUrl":null,"url":null,"abstract":"We extend the solvability of equations dened on a Banach space using numerically ecient secant-type methods. The convergence domain of these methods is enlarged using our new idea of restricted convergence region. By using this approach, we obtain a more precise location where the iterates lie than in earlier studies leading to tighter Lipschitz constants. This way the semi-local convergence produces weaker sucient convergence criteria and tighter error bounds than in earlier works. These improvements are also obtained under the same computational eort, since the new Lipschitz constants are special cases of the old ones.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending the solvability of equations using secant-type methods in Banach space\",\"authors\":\"I. Argyros, S. George\",\"doi\":\"10.33993/jnaat502-1134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the solvability of equations dened on a Banach space using numerically ecient secant-type methods. The convergence domain of these methods is enlarged using our new idea of restricted convergence region. By using this approach, we obtain a more precise location where the iterates lie than in earlier studies leading to tighter Lipschitz constants. This way the semi-local convergence produces weaker sucient convergence criteria and tighter error bounds than in earlier works. These improvements are also obtained under the same computational eort, since the new Lipschitz constants are special cases of the old ones.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat502-1134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat502-1134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用数值上的割型方法推广了巴拿赫空间上方程的可解性。利用限制收敛区域的新思想,扩大了这些方法的收敛域。通过使用这种方法,我们获得了比早期研究更精确的迭代所在位置,从而导致更严格的Lipschitz常数。这种半局部收敛方法产生了较弱的快速收敛准则和较紧的误差界。由于新的利普希茨常数是旧的利普希茨常数的特殊情况,在相同的计算条件下也得到了这些改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending the solvability of equations using secant-type methods in Banach space
We extend the solvability of equations dened on a Banach space using numerically ecient secant-type methods. The convergence domain of these methods is enlarged using our new idea of restricted convergence region. By using this approach, we obtain a more precise location where the iterates lie than in earlier studies leading to tighter Lipschitz constants. This way the semi-local convergence produces weaker sucient convergence criteria and tighter error bounds than in earlier works. These improvements are also obtained under the same computational eort, since the new Lipschitz constants are special cases of the old ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信