基于超轨迹标记的无监督视频对象分割

Masahiro Masuda, Yoshihiko Mochizuki, H. Ishikawa
{"title":"基于超轨迹标记的无监督视频对象分割","authors":"Masahiro Masuda, Yoshihiko Mochizuki, H. Ishikawa","doi":"10.23919/MVA.2017.7986897","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to unsupervised video segmentation based on the trajectories of Temporal Super-pixels (TSPs). We cast the segmentation problem as a trajectory-labeling problem and define a Markov random field on a graph in which each node represents a trajectory of TSPs, which we minimize using a new two-stage optimization method we developed. The adaption of the trajectories as basic building blocks brings several advantages over conventional superpixel-based methods, such as more expressive potential functions, temporal coherence of the resulting segmentation, and drastically reduced number of the MRF nodes. The most important effect is, however, that it allows more robust segmentation of the foreground that is static in some frames. The method is evaluated on a subset of the standard SegTrack benchmark and yields competitive results against the state-of-the-art methods.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised video object segmentation by supertrajectory labeling\",\"authors\":\"Masahiro Masuda, Yoshihiko Mochizuki, H. Ishikawa\",\"doi\":\"10.23919/MVA.2017.7986897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach to unsupervised video segmentation based on the trajectories of Temporal Super-pixels (TSPs). We cast the segmentation problem as a trajectory-labeling problem and define a Markov random field on a graph in which each node represents a trajectory of TSPs, which we minimize using a new two-stage optimization method we developed. The adaption of the trajectories as basic building blocks brings several advantages over conventional superpixel-based methods, such as more expressive potential functions, temporal coherence of the resulting segmentation, and drastically reduced number of the MRF nodes. The most important effect is, however, that it allows more robust segmentation of the foreground that is static in some frames. The method is evaluated on a subset of the standard SegTrack benchmark and yields competitive results against the state-of-the-art methods.\",\"PeriodicalId\":193716,\"journal\":{\"name\":\"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA.2017.7986897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于时间超像素(tsp)轨迹的无监督视频分割方法。我们将分割问题作为一个轨迹标记问题,并在图上定义一个马尔可夫随机场,其中每个节点代表tsp的轨迹,我们使用我们开发的新的两阶段优化方法最小化。与传统的基于超像素的方法相比,将轨迹作为基本构建块具有几个优点,例如更具表现力的势函数、分割结果的时间一致性以及大幅减少MRF节点的数量。然而,最重要的效果是,它允许对某些帧中静态的前景进行更稳健的分割。该方法在标准SegTrack基准的一个子集上进行评估,并与最先进的方法产生竞争结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised video object segmentation by supertrajectory labeling
We propose a novel approach to unsupervised video segmentation based on the trajectories of Temporal Super-pixels (TSPs). We cast the segmentation problem as a trajectory-labeling problem and define a Markov random field on a graph in which each node represents a trajectory of TSPs, which we minimize using a new two-stage optimization method we developed. The adaption of the trajectories as basic building blocks brings several advantages over conventional superpixel-based methods, such as more expressive potential functions, temporal coherence of the resulting segmentation, and drastically reduced number of the MRF nodes. The most important effect is, however, that it allows more robust segmentation of the foreground that is static in some frames. The method is evaluated on a subset of the standard SegTrack benchmark and yields competitive results against the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信