Abel Ramalho Galvão, Jonathan M. C. Rehem, W. L. C. D. Santos, Luciano Rebouças de Oliveira, A. A. Duarte, M. F. Angelo
{"title":"组织学图像中肾小球检测对象检测模型的评价","authors":"Abel Ramalho Galvão, Jonathan M. C. Rehem, W. L. C. D. Santos, Luciano Rebouças de Oliveira, A. A. Duarte, M. F. Angelo","doi":"10.5753/sibgrapi.est.2021.20028","DOIUrl":null,"url":null,"abstract":"Os glomérulos são estrutruas renais responsáveis pela filtragem do sangue e podem ser acometidos por lesões. Atualmente, sistemas computacionais para auxiliar na identficação destas lesões têm sido desenvolvidos, e assim, é de grande importância a detecção destes glomérulos. O objetivo deste trabalho é avaliar o desempenho de modelos de detecção de objetos para a detecção de glomérulos em imagens histológicas digitais. Foram avaliados 3 modelos: SM1 (SSD Mobilenet v1), FRR50 (Faster RCNN Resnet 50) e FRR101 (Faster RCNN Resnet 101), dos quais, o modelo FRR50 obteve o melhor resultado, mAP=0.88.","PeriodicalId":110864,"journal":{"name":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avaliação de Modelos de Detecção de Objetos para Detectar Glomérulos em Imagens Histológicas\",\"authors\":\"Abel Ramalho Galvão, Jonathan M. C. Rehem, W. L. C. D. Santos, Luciano Rebouças de Oliveira, A. A. Duarte, M. F. Angelo\",\"doi\":\"10.5753/sibgrapi.est.2021.20028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Os glomérulos são estrutruas renais responsáveis pela filtragem do sangue e podem ser acometidos por lesões. Atualmente, sistemas computacionais para auxiliar na identficação destas lesões têm sido desenvolvidos, e assim, é de grande importância a detecção destes glomérulos. O objetivo deste trabalho é avaliar o desempenho de modelos de detecção de objetos para a detecção de glomérulos em imagens histológicas digitais. Foram avaliados 3 modelos: SM1 (SSD Mobilenet v1), FRR50 (Faster RCNN Resnet 50) e FRR101 (Faster RCNN Resnet 101), dos quais, o modelo FRR50 obteve o melhor resultado, mAP=0.88.\",\"PeriodicalId\":110864,\"journal\":{\"name\":\"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sibgrapi.est.2021.20028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2021.20028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Avaliação de Modelos de Detecção de Objetos para Detectar Glomérulos em Imagens Histológicas
Os glomérulos são estrutruas renais responsáveis pela filtragem do sangue e podem ser acometidos por lesões. Atualmente, sistemas computacionais para auxiliar na identficação destas lesões têm sido desenvolvidos, e assim, é de grande importância a detecção destes glomérulos. O objetivo deste trabalho é avaliar o desempenho de modelos de detecção de objetos para a detecção de glomérulos em imagens histológicas digitais. Foram avaliados 3 modelos: SM1 (SSD Mobilenet v1), FRR50 (Faster RCNN Resnet 50) e FRR101 (Faster RCNN Resnet 101), dos quais, o modelo FRR50 obteve o melhor resultado, mAP=0.88.