O. Brzobohatý, M. Šiler, L. Chvatal, Vítězslav Karásek, P. Zemánek
{"title":"非球形金属纳米粒子在光学阱中的行为","authors":"O. Brzobohatý, M. Šiler, L. Chvatal, Vítězslav Karásek, P. Zemánek","doi":"10.1117/12.2176013","DOIUrl":null,"url":null,"abstract":"Even though a nanoparticle is much smaller than the wavelength used for their spatial confinement in an optical trap, the nanoparticle shape strongly influences force interaction between the light and the nanoparticle. The nanoparticle orientation with respect to the beam propagation and polarization strongly influences the light scattering pattern and thus the acting optical forces and torques upon the nanoparticle. We demonstrate experimental and theoretical results concerning the optical trapping of metal nanoparticles and the influence of the trapping wavelength on shaped plasmonic nanoparticles.","PeriodicalId":434989,"journal":{"name":"Wave and Quantum Aspects of Contemporary Optics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behaviour of a non-spherical metal nanoparticle in an optical trap\",\"authors\":\"O. Brzobohatý, M. Šiler, L. Chvatal, Vítězslav Karásek, P. Zemánek\",\"doi\":\"10.1117/12.2176013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even though a nanoparticle is much smaller than the wavelength used for their spatial confinement in an optical trap, the nanoparticle shape strongly influences force interaction between the light and the nanoparticle. The nanoparticle orientation with respect to the beam propagation and polarization strongly influences the light scattering pattern and thus the acting optical forces and torques upon the nanoparticle. We demonstrate experimental and theoretical results concerning the optical trapping of metal nanoparticles and the influence of the trapping wavelength on shaped plasmonic nanoparticles.\",\"PeriodicalId\":434989,\"journal\":{\"name\":\"Wave and Quantum Aspects of Contemporary Optics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave and Quantum Aspects of Contemporary Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2176013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave and Quantum Aspects of Contemporary Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2176013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Behaviour of a non-spherical metal nanoparticle in an optical trap
Even though a nanoparticle is much smaller than the wavelength used for their spatial confinement in an optical trap, the nanoparticle shape strongly influences force interaction between the light and the nanoparticle. The nanoparticle orientation with respect to the beam propagation and polarization strongly influences the light scattering pattern and thus the acting optical forces and torques upon the nanoparticle. We demonstrate experimental and theoretical results concerning the optical trapping of metal nanoparticles and the influence of the trapping wavelength on shaped plasmonic nanoparticles.