{"title":"正面和未标记学习算法及其应用:综述","authors":"Kristen Jaskie, A. Spanias","doi":"10.1109/IISA.2019.8900698","DOIUrl":null,"url":null,"abstract":"This paper will address the Positive and Unlabeled learning problem (PU learning) and its importance in the growing field of semi-supervised learning. In most real-world classification applications, well labeled data is expensive or impossible to obtain. We can often label a small subset of data as belonging to the class of interest. It is frequently impractical to manually label all data we are not interested in. We are left with a small set of positive labeled items of interest and a large set of unknown and unlabeled data. Learning a model for this is the PU learning problem.In this paper, we explore several applications for PU learning including examples in biological/medical, business, security, and signal processing. We then survey the literature for new and existing solutions to the PU learning problem.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Positive And Unlabeled Learning Algorithms And Applications: A Survey\",\"authors\":\"Kristen Jaskie, A. Spanias\",\"doi\":\"10.1109/IISA.2019.8900698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper will address the Positive and Unlabeled learning problem (PU learning) and its importance in the growing field of semi-supervised learning. In most real-world classification applications, well labeled data is expensive or impossible to obtain. We can often label a small subset of data as belonging to the class of interest. It is frequently impractical to manually label all data we are not interested in. We are left with a small set of positive labeled items of interest and a large set of unknown and unlabeled data. Learning a model for this is the PU learning problem.In this paper, we explore several applications for PU learning including examples in biological/medical, business, security, and signal processing. We then survey the literature for new and existing solutions to the PU learning problem.\",\"PeriodicalId\":371385,\"journal\":{\"name\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2019.8900698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Positive And Unlabeled Learning Algorithms And Applications: A Survey
This paper will address the Positive and Unlabeled learning problem (PU learning) and its importance in the growing field of semi-supervised learning. In most real-world classification applications, well labeled data is expensive or impossible to obtain. We can often label a small subset of data as belonging to the class of interest. It is frequently impractical to manually label all data we are not interested in. We are left with a small set of positive labeled items of interest and a large set of unknown and unlabeled data. Learning a model for this is the PU learning problem.In this paper, we explore several applications for PU learning including examples in biological/medical, business, security, and signal processing. We then survey the literature for new and existing solutions to the PU learning problem.