J. Stepišnik, B. Fritzinger, U. Scheler, A. Mohorič
{"title":"用核磁共振脉冲梯度自旋回波研究纳米孔中的自扩散","authors":"J. Stepišnik, B. Fritzinger, U. Scheler, A. Mohorič","doi":"10.1209/0295-5075/98/57009","DOIUrl":null,"url":null,"abstract":"NMR pulse gradient spin echo is the most efficient method for non-invasive elucidation of molecular transport in heterogeneous media. With a proper interpretation of experimental data, the method can also be applied to investigate molecular self-diffusion in pores small enough that the characteristic diffusion times are much shorter than time, needed to build up the spin phase structure by the pulse of magnetic field gradient. This is demonstrated by the analysis of restricted self-diffusion measurement of water molecules trapped in a polyamide membrane. The results are presented as a distribution of spin-relaxation rates and pore sizes in this nanoporous system that also present the method in its true colors as a useful tool in the bio-nanotechology.","PeriodicalId":171520,"journal":{"name":"EPL (Europhysics Letters)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-diffusion in nanopores studied by the NMR pulse gradient spin echo\",\"authors\":\"J. Stepišnik, B. Fritzinger, U. Scheler, A. Mohorič\",\"doi\":\"10.1209/0295-5075/98/57009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NMR pulse gradient spin echo is the most efficient method for non-invasive elucidation of molecular transport in heterogeneous media. With a proper interpretation of experimental data, the method can also be applied to investigate molecular self-diffusion in pores small enough that the characteristic diffusion times are much shorter than time, needed to build up the spin phase structure by the pulse of magnetic field gradient. This is demonstrated by the analysis of restricted self-diffusion measurement of water molecules trapped in a polyamide membrane. The results are presented as a distribution of spin-relaxation rates and pore sizes in this nanoporous system that also present the method in its true colors as a useful tool in the bio-nanotechology.\",\"PeriodicalId\":171520,\"journal\":{\"name\":\"EPL (Europhysics Letters)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL (Europhysics Letters)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/98/57009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL (Europhysics Letters)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/98/57009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-diffusion in nanopores studied by the NMR pulse gradient spin echo
NMR pulse gradient spin echo is the most efficient method for non-invasive elucidation of molecular transport in heterogeneous media. With a proper interpretation of experimental data, the method can also be applied to investigate molecular self-diffusion in pores small enough that the characteristic diffusion times are much shorter than time, needed to build up the spin phase structure by the pulse of magnetic field gradient. This is demonstrated by the analysis of restricted self-diffusion measurement of water molecules trapped in a polyamide membrane. The results are presented as a distribution of spin-relaxation rates and pore sizes in this nanoporous system that also present the method in its true colors as a useful tool in the bio-nanotechology.