蜂窝移动网络中带宽分配的智能方案

A. P. Isvarya Luckshmi, P. Visalakshi, N. Karthikeyan
{"title":"蜂窝移动网络中带宽分配的智能方案","authors":"A. P. Isvarya Luckshmi, P. Visalakshi, N. Karthikeyan","doi":"10.1109/PACC.2011.5978901","DOIUrl":null,"url":null,"abstract":"A phenomenal growth is witnessed in the development and deployment of wireless services. Wireless bandwidth is a scarce resource in a cellular mobile network and hence must be effectively utilized. This paper introduces two intelligent schemes to investigate the bandwidth allocation in cellular mobile networks namely Back Propagation Neural Network (BPN) and Particle Swarm Optimization (PSO). The performance objective is to maximize the bandwidth utilization while minimizing the bandwidth allocation for individual users. PSO and BPN methods are compared with the conventional Random Allocation and Linear Programming based Resource Reduction methods. Simulation results prove that the PSO method performs better than the BPN method.","PeriodicalId":403612,"journal":{"name":"2011 International Conference on Process Automation, Control and Computing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Intelligent Schemes for Bandwidth Allocation in Cellular Mobile Networks\",\"authors\":\"A. P. Isvarya Luckshmi, P. Visalakshi, N. Karthikeyan\",\"doi\":\"10.1109/PACC.2011.5978901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A phenomenal growth is witnessed in the development and deployment of wireless services. Wireless bandwidth is a scarce resource in a cellular mobile network and hence must be effectively utilized. This paper introduces two intelligent schemes to investigate the bandwidth allocation in cellular mobile networks namely Back Propagation Neural Network (BPN) and Particle Swarm Optimization (PSO). The performance objective is to maximize the bandwidth utilization while minimizing the bandwidth allocation for individual users. PSO and BPN methods are compared with the conventional Random Allocation and Linear Programming based Resource Reduction methods. Simulation results prove that the PSO method performs better than the BPN method.\",\"PeriodicalId\":403612,\"journal\":{\"name\":\"2011 International Conference on Process Automation, Control and Computing\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Process Automation, Control and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACC.2011.5978901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Process Automation, Control and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACC.2011.5978901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

无线服务的发展和部署出现了惊人的增长。无线带宽在蜂窝移动网络中是一种稀缺资源,因此必须有效利用。本文介绍了两种智能方案来研究蜂窝移动网络中的带宽分配,即反向传播神经网络(BPN)和粒子群优化(PSO)。性能目标是使带宽利用率最大化,同时使单个用户的带宽分配最小化。将PSO和BPN方法与传统的基于随机分配和线性规划的资源缩减方法进行了比较。仿真结果表明,粒子群算法优于BPN算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Schemes for Bandwidth Allocation in Cellular Mobile Networks
A phenomenal growth is witnessed in the development and deployment of wireless services. Wireless bandwidth is a scarce resource in a cellular mobile network and hence must be effectively utilized. This paper introduces two intelligent schemes to investigate the bandwidth allocation in cellular mobile networks namely Back Propagation Neural Network (BPN) and Particle Swarm Optimization (PSO). The performance objective is to maximize the bandwidth utilization while minimizing the bandwidth allocation for individual users. PSO and BPN methods are compared with the conventional Random Allocation and Linear Programming based Resource Reduction methods. Simulation results prove that the PSO method performs better than the BPN method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信