基于lstm的V2X通信系统RIS相移控制

Hyunsoo Kim, Y. Byun, B. Shim
{"title":"基于lstm的V2X通信系统RIS相移控制","authors":"Hyunsoo Kim, Y. Byun, B. Shim","doi":"10.1109/VTC2022-Fall57202.2022.10012864","DOIUrl":null,"url":null,"abstract":"With the rapid development of intelligent transportation systems (ITS), a growing number of vehicular applications have emerged to provide an entirely new experience for our daily life. To provide low-latency and high reliable services for these applications, there has been growing interest in reconfigurable intelligent surface (RIS)-aided vehicle-to-everything (V2X) systems. In this paper, we propose an entirely different deep learning (DL)-based phase shift control scheme for fast time-varying V2X channel. The proposed scheme, henceforth referred to as LSTM-based phase shift control for V2X (L-PSCV), learns temporal variation of channels from past pilot sequence and then uses them to find out the optimal phase shift for instantaneous channel. From the numerical experiments on the V2X system, we demonstrate that the proposed L-PSCV scheme outperforms the conventional schemes in terms of sum-rate.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LSTM-based RIS Phase Shift Control for V2X Communication Systems\",\"authors\":\"Hyunsoo Kim, Y. Byun, B. Shim\",\"doi\":\"10.1109/VTC2022-Fall57202.2022.10012864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of intelligent transportation systems (ITS), a growing number of vehicular applications have emerged to provide an entirely new experience for our daily life. To provide low-latency and high reliable services for these applications, there has been growing interest in reconfigurable intelligent surface (RIS)-aided vehicle-to-everything (V2X) systems. In this paper, we propose an entirely different deep learning (DL)-based phase shift control scheme for fast time-varying V2X channel. The proposed scheme, henceforth referred to as LSTM-based phase shift control for V2X (L-PSCV), learns temporal variation of channels from past pilot sequence and then uses them to find out the optimal phase shift for instantaneous channel. From the numerical experiments on the V2X system, we demonstrate that the proposed L-PSCV scheme outperforms the conventional schemes in terms of sum-rate.\",\"PeriodicalId\":326047,\"journal\":{\"name\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着智能交通系统(ITS)的快速发展,越来越多的车载应用出现,为我们的日常生活提供了全新的体验。为了为这些应用提供低延迟和高可靠性的服务,人们对可重构智能地面(RIS)辅助车辆到一切(V2X)系统的兴趣日益浓厚。在本文中,我们针对快速时变V2X信道提出了一种完全不同的基于深度学习(DL)的相移控制方案。本文提出的方案(以下称为基于lstm的V2X相移控制(L-PSCV)),从过去导频序列中学习信道的时间变化,然后利用它们找出瞬时信道的最优相移。通过在V2X系统上的数值实验,我们证明了所提出的L-PSCV方案在求和速率方面优于传统方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSTM-based RIS Phase Shift Control for V2X Communication Systems
With the rapid development of intelligent transportation systems (ITS), a growing number of vehicular applications have emerged to provide an entirely new experience for our daily life. To provide low-latency and high reliable services for these applications, there has been growing interest in reconfigurable intelligent surface (RIS)-aided vehicle-to-everything (V2X) systems. In this paper, we propose an entirely different deep learning (DL)-based phase shift control scheme for fast time-varying V2X channel. The proposed scheme, henceforth referred to as LSTM-based phase shift control for V2X (L-PSCV), learns temporal variation of channels from past pilot sequence and then uses them to find out the optimal phase shift for instantaneous channel. From the numerical experiments on the V2X system, we demonstrate that the proposed L-PSCV scheme outperforms the conventional schemes in terms of sum-rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信