FindiLike:一个偏好驱动的实体搜索引擎,用于评估实体检索和意见总结

Kavita A. Ganesan, ChengXiang Zhai
{"title":"FindiLike:一个偏好驱动的实体搜索引擎,用于评估实体检索和意见总结","authors":"Kavita A. Ganesan, ChengXiang Zhai","doi":"10.1145/2513150.2513163","DOIUrl":null,"url":null,"abstract":"We describe a novel preference-driven search engine (FindiLike) which allows users to find entities of interest based on preferences and also allows users to digest opinions about the retrieved entities easily. FindiLike leverages large amounts of online reviews about various entities, and ranks entities based on how well their associated reviews match a user's preference query (expressed in keywords). FindiLike then uses abstractive summarization techniques to generate concise opinion summaries to enable users to digest the opinions about an entity. We discuss how the system can be extended to support in situ evaluation of two interesting new tasks, i.e., opinion-based entity ranking and abstractive summarization of opinions. The system is currently supporting hotel search and being extended to support in situ evaluation of these two tasks. We will demonstrate the system in the domain of hotel search and show how in situ evaluation can be supported through natural user interaction with the system.","PeriodicalId":436800,"journal":{"name":"LivingLab '13","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FindiLike: a preference driven entity search engine for evaluating entity retrieval and opinion summarization\",\"authors\":\"Kavita A. Ganesan, ChengXiang Zhai\",\"doi\":\"10.1145/2513150.2513163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a novel preference-driven search engine (FindiLike) which allows users to find entities of interest based on preferences and also allows users to digest opinions about the retrieved entities easily. FindiLike leverages large amounts of online reviews about various entities, and ranks entities based on how well their associated reviews match a user's preference query (expressed in keywords). FindiLike then uses abstractive summarization techniques to generate concise opinion summaries to enable users to digest the opinions about an entity. We discuss how the system can be extended to support in situ evaluation of two interesting new tasks, i.e., opinion-based entity ranking and abstractive summarization of opinions. The system is currently supporting hotel search and being extended to support in situ evaluation of these two tasks. We will demonstrate the system in the domain of hotel search and show how in situ evaluation can be supported through natural user interaction with the system.\",\"PeriodicalId\":436800,\"journal\":{\"name\":\"LivingLab '13\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LivingLab '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2513150.2513163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LivingLab '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513150.2513163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们描述了一种新的偏好驱动搜索引擎(FindiLike),它允许用户根据偏好找到感兴趣的实体,也允许用户轻松地消化关于检索实体的意见。FindiLike利用大量关于各种实体的在线评论,并根据其相关评论与用户偏好查询(以关键字表示)的匹配程度对实体进行排名。然后FindiLike使用抽象摘要技术生成简明的意见摘要,使用户能够理解关于实体的意见。我们讨论了如何将系统扩展到支持两个有趣的新任务的现场评估,即基于意见的实体排序和意见的抽象摘要。该系统目前正在支持酒店搜索,并正在扩展到支持对这两项任务的现场评价。我们将在酒店搜索领域演示该系统,并展示如何通过与系统的自然用户交互来支持现场评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FindiLike: a preference driven entity search engine for evaluating entity retrieval and opinion summarization
We describe a novel preference-driven search engine (FindiLike) which allows users to find entities of interest based on preferences and also allows users to digest opinions about the retrieved entities easily. FindiLike leverages large amounts of online reviews about various entities, and ranks entities based on how well their associated reviews match a user's preference query (expressed in keywords). FindiLike then uses abstractive summarization techniques to generate concise opinion summaries to enable users to digest the opinions about an entity. We discuss how the system can be extended to support in situ evaluation of two interesting new tasks, i.e., opinion-based entity ranking and abstractive summarization of opinions. The system is currently supporting hotel search and being extended to support in situ evaluation of these two tasks. We will demonstrate the system in the domain of hotel search and show how in situ evaluation can be supported through natural user interaction with the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信