基于社会标签的个性化推荐模型

Xiufeng Xia, Shu Zhang, Xiaoming Li
{"title":"基于社会标签的个性化推荐模型","authors":"Xiufeng Xia, Shu Zhang, Xiaoming Li","doi":"10.1109/DBTA.2010.5659026","DOIUrl":null,"url":null,"abstract":"In traditional e-commerce websites, social tags are used in product classification only, and not applied in the domain of personalized recommendation technology. In this paper, we propose a personalized recommendation model based on social tags. We build a user interest model for products by reflecting user interest and product features directly through social tags, and optimize the interest model by social tags clustering. We design a personalized recommendation algorithm based on this model in order to find out the high user interest degree products, which can provide personalized recommendation service for users. The experiment results show that the personalized recommendation model based on social tags can effectively improve the accuracy of product recommendation.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Personalized Recommendation Model Based on Social Tags\",\"authors\":\"Xiufeng Xia, Shu Zhang, Xiaoming Li\",\"doi\":\"10.1109/DBTA.2010.5659026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In traditional e-commerce websites, social tags are used in product classification only, and not applied in the domain of personalized recommendation technology. In this paper, we propose a personalized recommendation model based on social tags. We build a user interest model for products by reflecting user interest and product features directly through social tags, and optimize the interest model by social tags clustering. We design a personalized recommendation algorithm based on this model in order to find out the high user interest degree products, which can provide personalized recommendation service for users. The experiment results show that the personalized recommendation model based on social tags can effectively improve the accuracy of product recommendation.\",\"PeriodicalId\":320509,\"journal\":{\"name\":\"2010 2nd International Workshop on Database Technology and Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Database Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DBTA.2010.5659026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5659026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在传统的电子商务网站中,社交标签仅用于产品分类,并未应用于个性化推荐技术领域。本文提出了一种基于社交标签的个性化推荐模型。我们通过社交标签直接反映用户兴趣和产品特征,构建产品的用户兴趣模型,并通过社交标签聚类对兴趣模型进行优化。在此模型的基础上设计个性化推荐算法,找出用户感兴趣程度高的产品,为用户提供个性化推荐服务。实验结果表明,基于社会标签的个性化推荐模型可以有效地提高产品推荐的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Personalized Recommendation Model Based on Social Tags
In traditional e-commerce websites, social tags are used in product classification only, and not applied in the domain of personalized recommendation technology. In this paper, we propose a personalized recommendation model based on social tags. We build a user interest model for products by reflecting user interest and product features directly through social tags, and optimize the interest model by social tags clustering. We design a personalized recommendation algorithm based on this model in order to find out the high user interest degree products, which can provide personalized recommendation service for users. The experiment results show that the personalized recommendation model based on social tags can effectively improve the accuracy of product recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信