P3ARM:关联规则挖掘的隐私保护协议

I. Saleh, Alaa Mokhtar, Amin Shoukry, Mohamed Eltoweissy
{"title":"P3ARM:关联规则挖掘的隐私保护协议","authors":"I. Saleh, Alaa Mokhtar, Amin Shoukry, Mohamed Eltoweissy","doi":"10.1109/IAW.2006.1652080","DOIUrl":null,"url":null,"abstract":"The ability to mine large volumes of distributed datasets enables more precise decision making. However, privacy concerns should be carefully addressed when mining datasets distributed over autonomous sites. We propose a new privacy-preserving protocol for association rule mining (P3ARM) over horizontally partitioned data. P3ARM is based on a distributed implementation of the Apriori algorithm. The key idea is to arbitrary assign polling sites to collect itemsets' supports in encrypted forms using homomorphic encryption techniques. A pair of polling sites is assigned for each itemset. Polling sites are different for consecutive rounds of the protocol to reduce the potential for collusion. Our performance analysis shows that P3ARM significantly outperforms a leading existing protocol. Moreover, P3ARM is scalable in the number of sites and the volume of data","PeriodicalId":326306,"journal":{"name":"2006 IEEE Information Assurance Workshop","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"P3ARM: Privacy-Preserving Protocol for Association Rule Mining\",\"authors\":\"I. Saleh, Alaa Mokhtar, Amin Shoukry, Mohamed Eltoweissy\",\"doi\":\"10.1109/IAW.2006.1652080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to mine large volumes of distributed datasets enables more precise decision making. However, privacy concerns should be carefully addressed when mining datasets distributed over autonomous sites. We propose a new privacy-preserving protocol for association rule mining (P3ARM) over horizontally partitioned data. P3ARM is based on a distributed implementation of the Apriori algorithm. The key idea is to arbitrary assign polling sites to collect itemsets' supports in encrypted forms using homomorphic encryption techniques. A pair of polling sites is assigned for each itemset. Polling sites are different for consecutive rounds of the protocol to reduce the potential for collusion. Our performance analysis shows that P3ARM significantly outperforms a leading existing protocol. Moreover, P3ARM is scalable in the number of sites and the volume of data\",\"PeriodicalId\":326306,\"journal\":{\"name\":\"2006 IEEE Information Assurance Workshop\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Assurance Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAW.2006.1652080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Assurance Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAW.2006.1652080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

挖掘大量分布式数据集的能力使决策更加精确。然而,在挖掘分布在自治站点上的数据集时,应该仔细解决隐私问题。提出了一种新的基于水平分区数据的关联规则挖掘(P3ARM)隐私保护协议。P3ARM基于Apriori算法的分布式实现。其关键思想是任意分配轮询站点,使用同态加密技术以加密的形式收集项目集的支持。为每个项目集分配一对轮询站点。在协议的连续回合中,投票地点是不同的,以减少串通的可能性。我们的性能分析表明,P3ARM显著优于领先的现有协议。此外,P3ARM在站点数量和数据量方面具有可扩展性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
P3ARM: Privacy-Preserving Protocol for Association Rule Mining
The ability to mine large volumes of distributed datasets enables more precise decision making. However, privacy concerns should be carefully addressed when mining datasets distributed over autonomous sites. We propose a new privacy-preserving protocol for association rule mining (P3ARM) over horizontally partitioned data. P3ARM is based on a distributed implementation of the Apriori algorithm. The key idea is to arbitrary assign polling sites to collect itemsets' supports in encrypted forms using homomorphic encryption techniques. A pair of polling sites is assigned for each itemset. Polling sites are different for consecutive rounds of the protocol to reduce the potential for collusion. Our performance analysis shows that P3ARM significantly outperforms a leading existing protocol. Moreover, P3ARM is scalable in the number of sites and the volume of data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信