{"title":"Astra:具有成本效益和质量意识的自主无服务器分析","authors":"Jananie Jarachanthan, Li Chen, Fei Xu, Bo Li","doi":"10.1109/IPDPS49936.2021.00085","DOIUrl":null,"url":null,"abstract":"With the ability to simplify the code deployment with one-click upload and lightweight execution, serverless computing has emerged as a promising paradigm with increasing popularity. However, there remain open challenges when adapting data-intensive analytics applications to the serverless context, in which users of serverless analytics encounter with the difficulty in coordinating computation across different stages and provisioning resources in a large configuration space. This paper presents our design and implementation of Astra, which configures and orchestrates serverless analytics jobs in an autonomous manner, while taking into account flexibly-specified user requirements. Astra relies on the modeling of performance and cost which characterizes the intricate interplay among multi-dimensional factors (e.g., function memory size, degree of parallelism at each stage). We formulate an optimization problem based on user-specific requirements towards performance enhancement or cost reduction, and develop a set of algorithms based on graph theory to obtain optimal job execution. We deploy Astra in the AWS Lambda platform and conduct real-world experiments over three representative benchmarks with different scales. Results demonstrate that Astra can achieve the optimal execution decision for serverless analytics, by improving the performance of 21% to 60% under a given budget constraint, and resulting in a cost reduction of 20% to 80% without violating performance requirement, when compared with three baseline configuration algorithms.","PeriodicalId":372234,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Astra: Autonomous Serverless Analytics with Cost-Efficiency and QoS-Awareness\",\"authors\":\"Jananie Jarachanthan, Li Chen, Fei Xu, Bo Li\",\"doi\":\"10.1109/IPDPS49936.2021.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the ability to simplify the code deployment with one-click upload and lightweight execution, serverless computing has emerged as a promising paradigm with increasing popularity. However, there remain open challenges when adapting data-intensive analytics applications to the serverless context, in which users of serverless analytics encounter with the difficulty in coordinating computation across different stages and provisioning resources in a large configuration space. This paper presents our design and implementation of Astra, which configures and orchestrates serverless analytics jobs in an autonomous manner, while taking into account flexibly-specified user requirements. Astra relies on the modeling of performance and cost which characterizes the intricate interplay among multi-dimensional factors (e.g., function memory size, degree of parallelism at each stage). We formulate an optimization problem based on user-specific requirements towards performance enhancement or cost reduction, and develop a set of algorithms based on graph theory to obtain optimal job execution. We deploy Astra in the AWS Lambda platform and conduct real-world experiments over three representative benchmarks with different scales. Results demonstrate that Astra can achieve the optimal execution decision for serverless analytics, by improving the performance of 21% to 60% under a given budget constraint, and resulting in a cost reduction of 20% to 80% without violating performance requirement, when compared with three baseline configuration algorithms.\",\"PeriodicalId\":372234,\"journal\":{\"name\":\"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS49936.2021.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS49936.2021.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Astra: Autonomous Serverless Analytics with Cost-Efficiency and QoS-Awareness
With the ability to simplify the code deployment with one-click upload and lightweight execution, serverless computing has emerged as a promising paradigm with increasing popularity. However, there remain open challenges when adapting data-intensive analytics applications to the serverless context, in which users of serverless analytics encounter with the difficulty in coordinating computation across different stages and provisioning resources in a large configuration space. This paper presents our design and implementation of Astra, which configures and orchestrates serverless analytics jobs in an autonomous manner, while taking into account flexibly-specified user requirements. Astra relies on the modeling of performance and cost which characterizes the intricate interplay among multi-dimensional factors (e.g., function memory size, degree of parallelism at each stage). We formulate an optimization problem based on user-specific requirements towards performance enhancement or cost reduction, and develop a set of algorithms based on graph theory to obtain optimal job execution. We deploy Astra in the AWS Lambda platform and conduct real-world experiments over three representative benchmarks with different scales. Results demonstrate that Astra can achieve the optimal execution decision for serverless analytics, by improving the performance of 21% to 60% under a given budget constraint, and resulting in a cost reduction of 20% to 80% without violating performance requirement, when compared with three baseline configuration algorithms.