从专家调查中估计潜在特征:对数据生成过程的敏感性分析

Kyle L. Marquardt, Daniel Pemstein
{"title":"从专家调查中估计潜在特征:对数据生成过程的敏感性分析","authors":"Kyle L. Marquardt, Daniel Pemstein","doi":"10.2139/ssrn.3302459","DOIUrl":null,"url":null,"abstract":"Models for converting expert-coded data to point estimates of latent concepts assume different data-generating processes. In this paper, we simulate ecologically-valid data according to different assumptions, and examine the degree to which common methods for aggregating expert-coded data can recover true values and construct appropriate coverage intervals from these data. We find that hierarchical latent variable models and the bootstrapped mean perform similarly when variation in reliability and scale perception is low; latent variable techniques outperform the mean when variation is high. Hierarchical A-M and IRT models generally perform similarly, though IRT models are often more likely to include true values within their coverage intervals. The median and non-hierarchical latent variable modeling techniques perform poorly under most assumed data generating processes.","PeriodicalId":365899,"journal":{"name":"Political Behavior: Voting & Public Opinion eJournal","volume":"402 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Estimating Latent Traits from Expert Surveys: An Analysis of Sensitivity to Data Generating Process\",\"authors\":\"Kyle L. Marquardt, Daniel Pemstein\",\"doi\":\"10.2139/ssrn.3302459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Models for converting expert-coded data to point estimates of latent concepts assume different data-generating processes. In this paper, we simulate ecologically-valid data according to different assumptions, and examine the degree to which common methods for aggregating expert-coded data can recover true values and construct appropriate coverage intervals from these data. We find that hierarchical latent variable models and the bootstrapped mean perform similarly when variation in reliability and scale perception is low; latent variable techniques outperform the mean when variation is high. Hierarchical A-M and IRT models generally perform similarly, though IRT models are often more likely to include true values within their coverage intervals. The median and non-hierarchical latent variable modeling techniques perform poorly under most assumed data generating processes.\",\"PeriodicalId\":365899,\"journal\":{\"name\":\"Political Behavior: Voting & Public Opinion eJournal\",\"volume\":\"402 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Behavior: Voting & Public Opinion eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3302459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Behavior: Voting & Public Opinion eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3302459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

将专家编码数据转换为潜在概念的点估计的模型假设不同的数据生成过程。在本文中,我们根据不同的假设来模拟生态有效的数据,并检验了聚合专家编码数据的常用方法在多大程度上可以从这些数据中恢复真实值并构建适当的覆盖区间。我们发现,当信度和尺度感知的变化较低时,层次潜变量模型和自举均值的表现相似;当变化较大时,潜变量技术的表现优于平均值。层次A-M和IRT模型通常执行相似,尽管IRT模型通常更可能在其覆盖区间内包含真实值。中位数和非分层潜变量建模技术在大多数假设的数据生成过程中表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Latent Traits from Expert Surveys: An Analysis of Sensitivity to Data Generating Process
Models for converting expert-coded data to point estimates of latent concepts assume different data-generating processes. In this paper, we simulate ecologically-valid data according to different assumptions, and examine the degree to which common methods for aggregating expert-coded data can recover true values and construct appropriate coverage intervals from these data. We find that hierarchical latent variable models and the bootstrapped mean perform similarly when variation in reliability and scale perception is low; latent variable techniques outperform the mean when variation is high. Hierarchical A-M and IRT models generally perform similarly, though IRT models are often more likely to include true values within their coverage intervals. The median and non-hierarchical latent variable modeling techniques perform poorly under most assumed data generating processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信